Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Top Membr ; 87: 1-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696882

RESUMO

Langmuir monolayers at gas/liquid interfaces provide a rich framework to investigate the interplay between multiscale geometry and mechanics. Monolayer collapse is investigated at a topological and geometric level by building a scale space M from experimental imaging data. We present a general lipid monolayer collapse phase diagram, which shows that wrinkling, folding, crumpling, shear banding, and vesiculation are a continuous set of mechanical states that can be approached by either tuning monolayer composition or temperature. The origin of the different mechanical states can be understood by investigating the monolayer geometry at two scales: fluorescent vs atomic force microscopy imaging. We show that an interesting switch in continuity occurs in passing between the two scales, CAFM∈MAFM≠CFM∈M. Studying the difference between monolayers that fold vs shear band, we show that shear banding is correlated to the persistence of a multi-length scale microstructure within the monolayer at all surface pressures. A detailed analytical geometric formalism to describe this microstructure is developed using the theory of structured deformations. Lastly, we provide the first ever finite element simulation of lipid monolayer collapse utilizing a direct mapping from the experimental image space M into a simulation domain P. We show that elastic dissipation in the form of bielasticity is a necessary and sufficient condition to capture loss of in-plane stability and shear banding.


Assuntos
Lipídeos , Pressão
2.
J Mech Phys Solids ; 141: 103974, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32461703

RESUMO

Clustering of ligand-binding receptors of different types on thickened isles of the cell membrane, namely lipid rafts, is an experimentally observed phenomenon. Although its influence on cell's response is deeply investigated, the role of the coupling between mechanical processes and multiphysics involving the active receptors and the surrounding lipid membrane during ligand-binding has not yet been understood. Specifically, the focus of this work is on G-protein-coupled receptors (GPCRs), the widest group of transmembrane proteins in animals, which regulate specific cell processes through chemical signalling pathways involving a synergistic balance between the cyclic Adenosine Monophosphate (cAMP) produced by active GPCRs in the intracellular environment and its efflux, mediated by the Multidrug Resistance Proteins (MRPs) transporters. This paper develops a multiphysics approach based on the interplay among energetics, multiscale geometrical changes and mass balance of species, i.e. active GPCRs and MRPs, including diffusion and kinetics of binding and unbinding. Because the obtained energy depends upon both the kinematics and the changes of species densities, balance of mass and of linear momentum are coupled and govern the space-time evolution of the cell membrane. The mechanobiology involving remodelling and change of lipid ordering of the cell membrane allows to predict dynamics of transporters and active receptors -in full agreement with experimentally observed cAMP levels- and how the latter trigger rafts formation and cluster on such sites. Within the current scientific debate on Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) and on the basis of the ascertained fact that lipid rafts often serve as an entry port for viruses, it is felt that approaches accounting for strong coupling among mechanobiological aspects could even turn helpful in better understanding membrane-mediated phenomena such as COVID-19 virus-cell interaction.

3.
PLoS Comput Biol ; 11(12): e1004670, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26691341

RESUMO

Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.


Assuntos
Agregação Celular/fisiologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Adesões Focais/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Elasticidade/fisiologia , Células Epiteliais/citologia , Humanos , Mecanotransdução Celular/fisiologia , Invasividade Neoplásica/fisiopatologia
4.
Biomech Model Mechanobiol ; 23(2): 485-505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060155

RESUMO

Cell membranes, mediator of many biological mechanisms from adhesion and metabolism up to mutation and infection, are highly dynamic and heterogeneous environments exhibiting a strong coupling between biochemical events and structural re-organisation. This involves conformational changes induced, at lower scales, by lipid order transitions and by the micro-mechanical interplay of lipids with transmembrane proteins and molecular diffusion. Particular attention is focused on lipid rafts, ordered lipid microdomains rich of signalling proteins, that co-localise to enhance substance trafficking and activate different intracellular biochemical pathways. In this framework, the theoretical modelling of the dynamic clustering of lipid rafts implies a full multiphysics coupling between the kinetics of phase changes and the mechanical work performed by transmembrane proteins on lipids, involving the bilayer elasticity. This mechanism produces complex interspecific dynamics in which membrane stresses and chemical potentials do compete by determining different morphological arrangements, alteration in diffusive walkways and coalescence phenomena, with a consequent influence on both signalling potential and intracellular processes. Therefore, after identifying the leading chemo-mechanical interactions, the present work investigates from a modelling perspective the spatio-temporal evolution of raft domains to theoretically explain co-localisation and synergy between proteins' activation and raft formation, by coupling diffusive and mechanical phenomena to observe different morphological patterns and clustering of ordered lipids. This could help to gain new insights into the remodelling of cell membranes and could potentially suggest mechanically based strategies to control their selectivity, by orienting intracellular functions and mechanotransduction.


Assuntos
Mecanotransdução Celular , Microdomínios da Membrana , Ligantes , Membrana Celular/metabolismo , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Lipídeos/análise , Bicamadas Lipídicas/análise , Bicamadas Lipídicas/metabolismo
5.
Biomech Model Mechanobiol ; 19(6): 2375-2395, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32535739

RESUMO

Wrinkling is a ubiquitous surface phenomenon in many biological tissues and is believed to play an important role in arterial health. As arteries are highly nonlinear, anisotropic, multilayered composite systems, it is necessary to investigate wrinkling incorporating these material characteristics. Several studies have examined surface wrinkling mechanisms with nonlinear isotropic material relationships. Nevertheless, wrinkling associated with anisotropic constitutive models such as Ogden-Gasser-Holzapfel (OGH), which is suitable for soft biological tissues, and in particular arteries, still requires investigation. Here, the effects of OGH parameters such as fibers' orientation, stiffness, and dispersion on the onset of wrinkling, wrinkle wavelength and amplitude are elucidated through analysis of a bilayer system composed of a thin, stiff neo-Hookean membrane and a soft OGH substrate subjected to compression. Critical contractile strain at which wrinkles occur is predicted using both finite element analysis and analytical linear perturbation approach. Results suggest that besides stiffness mismatch, anisotropic features associated with fiber stiffness and distribution might be used in natural layered systems to adjust wrinkling and subsequent folding behaviors. Further analysis of a bilayer system with fibers in the (x-y) plane subjected to compression in the x direction shows a complex dependence of wrinkling strain and wavelength on fiber angle, stiffness, and dispersion. This behavior is captured by an approximation utilizing the linearized anisotropic properties derived from OGH model. Such understanding of wrinkling in this artery wall-like system will help identify the role of wrinkling mechanisms in biological artery in addition to the design of its synthetic counterparts.


Assuntos
Anisotropia , Artérias/fisiologia , Força Compressiva , Animais , Fenômenos Biomecânicos , Artérias Carótidas/patologia , Simulação por Computador , Elasticidade , Análise de Elementos Finitos , Modelos Lineares , Bicamadas Lipídicas , Membranas , Artérias Mesentéricas/patologia , Camundongos , Modelos Biológicos , Modelos Cardiovasculares , Ratos , Estresse Mecânico
6.
Biomech Model Mechanobiol ; 12(6): 1233-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23460499

RESUMO

In this work, some implications of a recent model for the mechanical behavior of biological membranes (Deseri et al. in Continuum Mech Thermodyn 20(5):255-273, 2008) are exploited by means of a prototypical one-dimensional problem. We show that the knowledge of the membrane stretching elasticity permits to establish a precise connection among surface tension, bending rigidities and line tension during phase transition phenomena. For a specific choice of the stretching energy density, we evaluate these quantities in a membrane with coexistent fluid phases, showing a satisfactory comparison with the available experimental measurements. Finally, we determine the thickness profile inside the boundary layer where the order-disorder transition is observed.


Assuntos
Elasticidade , Membranas/fisiologia , Fenômenos Biomecânicos , Módulo de Elasticidade/fisiologia , Modelos Biológicos , Estresse Mecânico , Termodinâmica
7.
Int J Numer Method Biomed Eng ; 29(12): 1338-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23836622

RESUMO

In this paper, the authors introduce a hierarchic fractal model to describe bone hereditariness. Indeed, experimental data of stress relaxation or creep functions obtained by compressive/tensile tests have been proved to be fit by power law with real exponent 0 ⩽ ß â©½1. The rheological behavior of the material has therefore been obtained, using the Boltzmann-Volterra superposition principle, in terms of real order integrals and derivatives (fractional-order calculus). It is shown that the power laws describing creep/relaxation of bone tissue may be obtained by introducing a fractal description of bone cross-section, and the Hausdorff dimension of the fractal geometry is then related to the exponent of the power law.


Assuntos
Fenômenos Biomecânicos/fisiologia , Osso e Ossos/fisiologia , Modelos Biológicos , Algoritmos , Fractais , Reologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa