Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 529, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811885

RESUMO

BACKGROUND: The colonization of land and the diversification of terrestrial plants is intimately linked to the evolutionary history of their symbiotic fungal partners. Extant representatives of these fungal lineages include mutualistic plant symbionts, the arbuscular mycorrhizal (AM) fungi in Glomeromycota and fine root endophytes in Endogonales (Mucoromycota), as well as fungi with saprotrophic, pathogenic and endophytic lifestyles. These fungal groups separate into three monophyletic lineages but their evolutionary relationships remain enigmatic confounding ancestral reconstructions. Their taxonomic ranks are currently fluid. RESULTS: In this study, we recognize these three monophyletic linages as phyla, and use a balanced taxon sampling and broad taxonomic representation for phylogenomic analysis that rejects a hard polytomy and resolves Glomeromycota as sister to a clade composed of Mucoromycota and Mortierellomycota. Low copy numbers of genes associated with plant cell wall degradation could not be assigned to the transition to a plant symbiotic lifestyle but appears to be an ancestral phylogenetic signal. Both plant symbiotic lineages, Glomeromycota and Endogonales, lack numerous thiamine metabolism genes but the lack of fatty acid synthesis genes is specific to AM fungi. Many genes previously thought to be missing specifically in Glomeromycota are either missing in all analyzed phyla, or in some cases, are actually present in some of the analyzed AM fungal lineages, e.g. the high affinity phosphorus transporter Pho89. CONCLUSION: Based on a broad taxon sampling of fungal genomes we present a well-supported phylogeny for AM fungi and their sister lineages. We show that among these lineages, two independent evolutionary transitions to mutualistic plant symbiosis happened in a genomic background profoundly different from that known from the emergence of ectomycorrhizal fungi in Dikarya. These results call for further reevaluation of genomic signatures associated with plant symbiosis.


Assuntos
Genômica , Micorrizas , Filogenia , Simbiose , Micorrizas/genética , Micorrizas/fisiologia , Simbiose/genética , Genômica/métodos , Evolução Molecular , Genoma Fúngico , Glomeromycota/genética , Glomeromycota/fisiologia , Plantas/microbiologia
2.
Fungal Genet Biol ; 169: 103838, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716699

RESUMO

Intimate associations between fungi and intracellular bacterial endosymbionts are becoming increasingly well understood. Phylogenetic analyses demonstrate that bacterial endosymbionts of Mucoromycota fungi are related either to free-living Burkholderia or Mollicutes species. The so-called Burkholderia-related endosymbionts or BRE comprise Mycoavidus, Mycetohabitans and Candidatus Glomeribacter gigasporarum. These endosymbionts are marked by genome contraction thought to be associated with intracellular selection. However, the conclusions drawn thus far are based on a very small subset of endosymbiont genomes, and the mechanisms leading to genome streamlining are not well understood. The purpose of this study was to better understand how intracellular existence shapes Mycoavidus and BRE functionally at the genome level. To this end we generated and analyzed 14 novel draft genomes for Mycoavidus living within the hyphae of Mortierellomycotina fungi. We found that our novel Mycoavidus genomes were significantly reduced compared to free-living Burkholderiales relatives. Using a genome-scale phylogenetic approach including the novel and available existing genomes of Mycoavidus, we show that the genus is an assemblage composed of two independently derived lineages including three well supported clades of Mycoavidus. Using a comparative genomic approach, we shed light on the functional implications of genome reduction, documenting shared and unique gene loss patterns between the three Mycoavidus clades. We found that many endosymbiont isolates demonstrate patterns of vertical transmission and host-specificity, but others are present in phylogenetically disparate hosts. We discuss how reductive evolution and host specificity reflect convergent adaptation to the intrahyphal selective landscape, and commonalities of eukaryotic endosymbiont genome evolution.


Assuntos
Burkholderiaceae , Adaptação ao Hospedeiro , Filogenia , Burkholderiaceae/genética , Fungos/genética , Bactérias , Simbiose/genética
3.
Fungal Divers ; 104(1): 267-289, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33364917

RESUMO

Early efforts to classify Mortierellaceae were based on macro- and micromorphology, but sequencing and phylogenetic studies with ribosomal DNA (rDNA) markers have demonstrated conflicting taxonomic groupings and polyphyletic genera. Although some taxonomic confusion in the family has been clarified, rDNA data alone is unable to resolve higher level phylogenetic relationships within Mortierellaceae. In this study, we applied two parallel approaches to resolve the Mortierellaceae phylogeny: low coverage genome (LCG) sequencing and high-throughput, multiplexed targeted amplicon sequencing to generate sequence data for multi-gene phylogenetics. We then combined our datasets to provide a well-supported genome-based phylogeny having broad sampling depth from the amplicon dataset. Resolving the Mortierellaceae phylogeny into monophyletic groups led to the definition of 14 genera, 7 of which are newly proposed. Low-coverage genome sequencing proved to be a relatively cost-effective means of generating a well-resolved phylogeny. The multi-gene phylogenetics approach enabled much greater sampling depth and breadth than the LCG approach, but was unable to resolve higher-level organization of groups. We present this work to resolve some of the taxonomic confusion and provide a genus-level framework to empower future studies on Mortierellaceae diversity, biology, and evolution.

4.
New Phytol ; 222(1): 511-525, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30485448

RESUMO

Endogonales (Mucoromycotina), composed of Endogonaceae and Densosporaceae, is the only known non-Dikarya order with ectomycorrhizal members. They also form mycorrhizal-like association with some nonspermatophyte plants. It has been recently proposed that Endogonales were among the earliest mycorrhizal partners with land plants. It remains unknown whether Endogonales possess genomes with mycorrhizal-lifestyle signatures and whether Endogonales originated around the same time as land plants did. We sampled sporocarp tissue from four Endogonaceae collections and performed shotgun genome sequencing. After binning the metagenome data, we assembled and annotated the Endogonaceae genomes. We performed comparative analysis on plant-cell-wall-degrading enzymes (PCWDEs) and small secreted proteins (SSPs). We inferred phylogenetic placement of Endogonaceae and estimated the ages of Endogonaceae and Endogonales with expanded taxon sampling. Endogonaceae have large genomes with high repeat content, low diversity of PCWDEs, but without elevated SSP/secretome ratios. Dating analysis estimated that Endogonaceae originated in the Permian-Triassic boundary and Endogonales originated in the mid-late Silurian. Mycoplasma-related endobacterium sequences were identified in three Endogonaceae genomes. Endogonaceae genomes possess typical signatures of mycorrhizal lifestyle. The early origin of Endogonales suggests that the mycorrhizal association between Endogonales and plants might have played an important role during the colonization of land by plants.


Assuntos
Evolução Biológica , Mucorales/genética , Micorrizas/fisiologia , Filogenia , Genoma Fúngico , Metagenômica , Microbiota/genética , Anotação de Sequência Molecular , Mycoplasma/genética , Sequências Repetitivas de Ácido Nucleico/genética
5.
Int J Syst Evol Microbiol ; 67(5): 1177-1184, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28073398

RESUMO

Arbuscular mycorrhizal fungi (AMF, subphylum Glomeromycotina) are symbionts of most terrestrial plants. They commonly harbour endobacteria of a largely unknown biology, referred to as MRE (Mollicutes/mycoplasma-related endobacteria). Here, we propose to accommodate MRE in the novel genus 'Candidatus Moeniiplasma.' Phylogeny reconstructions based on the 16S rRNA gene sequences cluster 'Ca.Moeniiplasma' with representatives of the class Mollicutes, whereas phylogenies derived from amino acid sequences of 19 genes indicate that it is a discrete lineage sharing ancestry with the members of the family Mycoplasmataceae. Cells of 'Ca.Moeniiplasma' reside directly in the host cytoplasm and have not yet been cultivated. They are coccoid, ~500 nm in diameter, with an electron-dense layer outside the plasma membrane. However, the draft genomes of 'Ca.Moeniiplasma' suggest that this structure is not a Gram-positive cell wall. The evolution of 'Ca.Moeniiplasma' appears to be driven by an ultrarapid rate of mutation accumulation related to the loss of DNA repair mechanisms. Moreover, molecular evolution patterns suggest that, in addition to vertical transmission, 'Ca.Moeniiplasma' is able to transmit horizontally among distinct Glomeromycotina host lineages and exchange genes. On the basis of these unique lifestyle features, the new species 'Candidatus Moeniiplasma glomeromycotorum' is proposed.


Assuntos
Micorrizas , Filogenia , Simbiose , Tenericutes/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Evolução Molecular , Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tenericutes/genética , Tenericutes/isolamento & purificação
6.
Mycologia ; 109(3): 363-378, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28876195

RESUMO

Illumina amplicon sequencing of soil in a temperate pine forest in the southeastern United States detected an abundant, nitrogen (N)-responsive fungal genotype of unknown phylogenetic affiliation. Two isolates with ribosomal sequences consistent with that genotype were subsequently obtained. Examination of records in GenBank revealed that a genetically similar fungus had been isolated previously as an endophyte of moss in a pine forest in the southwestern United States. The three isolates were characterized using morphological, genomic, and multilocus molecular data (18S, internal transcribed spacer [ITS], and 28S rRNA sequences). Phylogenetic and maximum likelihood phylogenomic reconstructions revealed that the taxon represents a novel lineage in Mucoromycotina, only preceded by Calcarisporiella, the earliest diverging lineage in the subphylum. Sequences for the novel taxon are frequently detected in environmental sequencing studies, and it is currently part of UNITE's dynamic list of most wanted fungi. The fungus is dimorphic, grows best at room temperature, and is associated with a wide variety of bacteria. Here, a new monotypic genus, Bifiguratus, is proposed, typified by Bifiguratus adelaidae.


Assuntos
Endófitos/classificação , Endófitos/isolamento & purificação , Fungos/classificação , Fungos/isolamento & purificação , Microbiologia do Solo , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Endófitos/genética , Fungos/citologia , Fungos/genética , Técnicas Microbiológicas , Microscopia , Tipagem de Sequências Multilocus , Filogenia , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Sudeste dos Estados Unidos , Sudoeste dos Estados Unidos
7.
New Phytol ; 205(4): 1464-1472, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25345989

RESUMO

Glomeromycota have been considered the most ancient group of fungi capable of positively interacting with plants for many years. Recently, other basal fungi, the Endogone Mucoromycotina fungi, have been identified as novel plant symbionts, challenging the paradigm of Glomeromycota as the unique ancestral symbionts of land plants. Glomeromycota are known to host endobacteria and recent evidences show that also some Mucoromycotina contain endobacteria. In order to examine similarities between basal groups of plant-associated fungi, we tested whether Endogone contained endobacteria. Twenty-nine Endogone were investigated in order to identify Mollicutes-related endobacteria (Mre). Fruiting bodies were processed for transmission electron microscopy and molecularly investigated using fungal and Mre-specific primers. We demonstrate that Mre are present inside 13 out of 29 Endogone: endobacteria are directly embedded in the fungal cytoplasm and their 16S rDNA sequences cluster together with the ones retrieved from Glomeromycota, forming, however, a separate new clade. Our findings provide new insights on the evolutionary relations between Glomeromycota, Mucoromycotina and endobacteria, raising new questions on the role of these still enigmatic microbes in the ecology, evolution and diversification of their fungal hosts during the history of plant-fungal symbiosis.


Assuntos
Fungos/fisiologia , Plantas/microbiologia , Simbiose , Tenericutes/fisiologia , Sequência de Bases , Citoplasma/microbiologia , Carpóforos/fisiologia , Carpóforos/ultraestrutura , Fungos/ultraestrutura , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética
8.
Environ Microbiol ; 15(3): 822-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22830931

RESUMO

Arbuscular mycorrhizal fungi (AMF) can host Gram-positive endobacteria (BLOs) in their cytoplasm. These have been identified as Mollicutes-related microbes based on an inventory of AMF spores from fungal collections. Bacteria-like organisms (BLOs) of unknown identity have also been reported in the cytoplasm of AMF associated with liverworts, the earliest-diverged extant lineage of land plants. A combination of morphological, molecular and phylogenetic analyses revealed that three samples of two liverwort species (Conocephalum conicum and Lunularia cruciata) growing spontaneously in a botanical garden harboured AMF belonging to Glomerales, and these, in turn, hosted coccoid BLOs. 16S rDNA sequences from these BLOs clustered with the Mollicutes sequences identified from the spore collections but revealed the presence of novel phylotypes. Electron microscopy and fluorescence in situ hybridization (FISH) confirmed the presence of BLOs inside the cytoplasm of AMF hyphae colonizing the liverwort thalli. The high genetic variability of BLOs in liverwort-AMF associations thriving in the same ecological niche raises questions about the mechanisms underlying such diversity.


Assuntos
Glomeromycota/fisiologia , Hepatófitas/microbiologia , Micorrizas/fisiologia , Tenericutes/fisiologia , Glomeromycota/classificação , Glomeromycota/genética , Glomeromycota/ultraestrutura , Hepatófitas/ultraestrutura , Hifas/ultraestrutura , Hibridização in Situ Fluorescente , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/genética , Micorrizas/ultraestrutura , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Tenericutes/classificação , Tenericutes/genética
9.
Proc Biol Sci ; 280(1759): 20130207, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23536598

RESUMO

Hornworts are considered the sister group to vascular plants, but their fungal associations remain largely unexplored. The ancestral symbiotic condition for all plants is, nonetheless, widely assumed to be arbuscular mycorrhizal with Glomeromycota fungi. Owing to a recent report of other fungi in some non-vascular plants, here we investigate the fungi associated with diverse hornworts worldwide, using electron microscopy and molecular phylogenetics. We found that both Glomeromycota and Mucoromycotina fungi can form symbioses with most hornworts, often simultaneously. This discovery indicates that ancient terrestrial plants relied on a wider and more versatile symbiotic repertoire than previously thought, and it highlights the so far unappreciated ecological and evolutionary role of Mucoromycotina fungi.


Assuntos
Anthocerotophyta/fisiologia , Evolução Biológica , Fungos/fisiologia , Simbiose , Anthocerotophyta/genética , Anthocerotophyta/crescimento & desenvolvimento , Clonagem Molecular , DNA/genética , DNA/metabolismo , Evolução Molecular , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Glomeromycota/classificação , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Glomeromycota/fisiologia , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Análise de Sequência de DNA , Homologia de Sequência
10.
Methods Mol Biol ; 2605: 293-323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520400

RESUMO

Metagenomics approaches have revealed the importance of Mucoromycota in the evolution and functioning of plant microbiomes. Comprised of three subphyla (Glomeromycotina, Mortierellomycotina, and Mucoromycotina), this early diverging lineage of fungi encompasses species of mycorrhizal fungi, root endophytes, plant pathogens, and many decomposers of plant debris. Interestingly, several taxa of Mucoromycota share a common feature, that is, the presence of endobacteria within their mycelia and spores. The study of these endosymbiotic bacteria is still a challenging task. However, given recent improvements in the sensitivity of culture-free approaches, a deeper understanding of such microbial interactions is now possible and fuels an emerging research field. In this chapter, we report how Mucoromycota, in particular Mortierellomycotina, and their endobacteria can be investigated using a combination of diverse cellular biology, microscopy, and molecular techniques.


Assuntos
Glomeromycota , Micorrizas , Simbiose , Filogenia , Fungos , Plantas/microbiologia
11.
Commun Biol ; 6(1): 948, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723238

RESUMO

Diverse members of early-diverging Mucoromycota, including mycorrhizal taxa and soil-associated Mortierellaceae, are known to harbor Mollicutes-related endobacteria (MRE). It has been hypothesized that MRE were acquired by a common ancestor and transmitted vertically. Alternatively, MRE endosymbionts could have invaded after the divergence of Mucoromycota lineages and subsequently spread to new hosts horizontally. To better understand the evolutionary history of MRE symbionts, we generated and analyzed four complete MRE genomes from two Mortierellaceae genera: Linnemannia (MRE-L) and Benniella (MRE-B). These genomes include the smallest known of fungal endosymbionts and showed signals of a tight relationship with hosts including a reduced functional capacity and genes transferred from fungal hosts to MRE. Phylogenetic reconstruction including nine MRE from mycorrhizal fungi revealed that MRE-B genomes are more closely related to MRE from Glomeromycotina than MRE-L from the same host family. We posit that reductions in genome size, GC content, pseudogene content, and repeat content in MRE-L may reflect a longer-term relationship with their fungal hosts. These data indicate Linnemannia and Benniella MRE were likely acquired independently after their fungal hosts diverged from a common ancestor. This work expands upon foundational knowledge on minimal genomes and provides insights into the evolution of bacterial endosymbionts.


Assuntos
Micorrizas , Tenericutes , Filogenia , Genômica , Micorrizas/genética , Tamanho do Genoma
12.
iScience ; 25(8): 104840, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35996588

RESUMO

Fungi survive in diverse ecological niches by secreting proteins and other molecules into the environment to acquire food and interact with various biotic and abiotic stressors. Fungal secretome content is, therefore, believed to be tightly linked to fungal ecologies. We sampled 132 genomes from the early-diverging terrestrial fungal lineage zygomycetes (Mucoromycota and Zoopagomycota) and characterized their secretome composition. Our analyses revealed that phylogeny played an important role in shaping the secretome composition of zygomycete fungi with trophic mode contributing a smaller amount. Reconstruction of the evolution of secreted digestive enzymes revealed lineage-specific expansions, indicating that Mucoromycota and Zoopagomycota followed different trajectories early in their evolutionary history. We identified the presence of multiple pathogenicity-related proteins in the lineages known as saprotrophs, suggesting that either the ecologies of these fungi are incompletely known, and/or that these pathogenicity-related proteins have important functions associated with saprotrophic ecologies, both of which invite further investigation.

13.
Front Microbiol ; 11: 581313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329443

RESUMO

As obligate biotrophic symbionts, arbuscular mycorrhizal fungi (AMF) live in association with most land plants. Among them, Gigaspora margarita has been deeply investigated because of its peculiar features, i.e., the presence of an intracellular microbiota with endobacteria and viruses. The genome sequencing of this fungus revealed the presence of some hybrid non-ribosomal peptide synthases-polyketide synthases (NRPS-PKS) that have been rarely identified in AMF. The aim of this study is to describe the architecture of these NRPS-PKS sequences and to understand whether they are present in other fungal taxa related to G. margarita. A phylogenetic analysis shows that the ketoacyl synthase (KS) domain of one G. margarita NRPS-PKS clusters with prokaryotic sequences. Since horizontal gene transfer (HGT) has often been advocated as a relevant evolutionary mechanism for the spread of secondary metabolite genes, we hypothesized that a similar event could have interested the KS domain of the PKS module. The bacterial endosymbiont of G. margarita, Candidatus Glomeribacter gigasporarum (CaGg), was the first candidate as a donor, since it possesses a large biosynthetic cluster involving an NRPS-PKS. However, bioinformatics analyses do not confirm the hypothesis of a direct HGT from the endobacterium to the fungal host: indeed, endobacterial and fungal sequences show a different evolution and potentially different donors. Lastly, by amplifying a NRPS-PKS conserved fragment and mining the sequenced AMF genomes, we demonstrate that, irrespective of the presence of CaGg, G. margarita, and some other related Gigasporaceae possess such a sequence.

14.
Ticks Tick Borne Dis ; 10(5): 1070-1077, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176662

RESUMO

A wide range of arthropod species harbour bacterial endosymbionts in various tissues, many of them playing important roles in the fitness and biology of their hosts. In several cases, many different symbionts have been reported to coexist simultaneously within the same host and synergistic or antagonistic interactions can occur between them. While the associations with endosymbiotic bacteria have been widely studied in many insect species, in ticks such interactions are less investigated. The females and immatures of Ixodes ricinus (Ixodidae), the most common hard tick in Europe, harbour the intracellular endosymbiont "Candidatus Midichloria mitochondrii" with a prevalence up to 100%, suggesting a mutualistic relationship. Considering that the tissue distribution of a symbiont might be indicative of its functional role in the physiology of the host, we investigated M. mitochondrii specific localization pattern and the corresponding abundance in selected organs of I. ricinus females. We paired these experiments with in silico analysis of the metabolic pathways of M. mitochondrii, inferred from the available genome sequence, and additionally compared the presence of these pathways in seven other symbionts commonly harboured by ticks to try to obtain a comparative understanding of their biological effects on the tick hosts. M. mitochondrii was found to be abundant in ovaries and tracheae of unfed I. ricinus, and in ovaries, Malpighian tubules and salivary glands of semi-engorged females. These results, together with the in silico metabolic reconstruction allow to hypothesize that the bacterium could play multiple tissue-specific roles in the host, both enhancing the host fitness (supplying essential nutrients, enhancing the reproductive fitness, helping in the anti-oxidative defence, in the energy production and in the maintenance of homeostasis and water balance) and/or for ensuring its presence in the host population (nutrients acquisition, vertical and horizontal transmission). The ability of M. mitochondrii to colonize different tissues allows to speculate that distinctive sub-populations may display different specializations in accordance with tissue tropism. Our hypotheses should be corroborated with future nutritional and physiological experiments for a better understanding of the mechanisms underlying this symbiotic interaction.


Assuntos
Genoma Bacteriano , Ixodes/microbiologia , Redes e Vias Metabólicas , Rickettsiales/fisiologia , Simbiose , Tropismo Viral , Animais , Simulação por Computador , Feminino , Itália , Rickettsiales/genética , Rickettsiales/metabolismo
15.
ISME J ; 12(7): 1743-1757, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476142

RESUMO

Bacterial interactions with animals and plants have been examined for over a century; by contrast, the study of bacterial-fungal interactions has received less attention. Bacteria interact with fungi in diverse ways, and endobacteria that reside inside fungal cells represent the most intimate interaction. The most significant bacterial endosymbionts that have been studied are associated with Mucoromycota and include two main groups: Burkholderia-related and Mycoplasma-related endobacteria (MRE). Examples of Burkholderia-related endobacteria have been reported in the three Mucoromycota subphyla. By contrast, MRE have only been identified in Glomeromycotina and Mucoromycotina. This study aims to understand whether MRE dwell in Mortierellomycotina and, if so, to determine their impact on the fungal host. We carried out a large-scale screening of 394 Mortierellomycotina strains and employed a combination of microscopy, molecular phylogeny, next-generation sequencing and qPCR. We detected MRE in 12 strains. These endosymbionts represent novel bacterial phylotypes and show evidence of recombination. Their presence in Mortierellomycotina demonstrates that MRE occur within fungi across Mucoromycota and they may have lived in their common ancestor. We cured the fungus of its endosymbionts with antibiotics and observed improved biomass production in isogenic lines lacking MRE, demonstrating that these endobacteria impose some fitness costs to their fungal host. Here we provided the first functional insights into the lifestyle of MRE. Our findings indicate that MRE may be antagonistic to their fungal hosts, and adapted to a non-lethal parasitic lifestyle in the mycelium of Mucoromycota. However, context-dependent adaptive benefits to their host at minimal cost cannot not be excluded. Finally, we conclude that Mortierellomycotina represent attractive model organisms for exploring interactions between MRE and fungi.


Assuntos
Burkholderia/fisiologia , Fungos/fisiologia , Mycoplasma/fisiologia , Simbiose , Biodiversidade , Burkholderia/classificação , Burkholderia/genética , Burkholderia/isolamento & purificação , Fungos/química , Mycoplasma/classificação , Mycoplasma/genética , Mycoplasma/isolamento & purificação , Filogenia
16.
ISME J ; 11(8): 1727-1735, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28387771

RESUMO

Bacterial interactions with plants and animals have been examined for many years; differently, only with the new millennium the study of bacterial-fungal interactions blossomed, becoming a new field of microbiology with relevance to microbial ecology, human health and biotechnology. Bacteria and fungi interact at different levels and bacterial endosymbionts, which dwell inside fungal cells, provide the most intimate example. Bacterial endosymbionts mostly occur in fungi of the phylum Mucoromycota and include Betaproteobacteria (Burkhoderia-related) and Mollicutes (Mycoplasma-related). Based on phylogenomics and estimations of divergence time, we hypothesized two different scenarios for the origin of these interactions (early vs late bacterial invasion). Sequencing of the genomes of fungal endobacteria revealed a significant reduction in genome size, particularly in endosymbionts of Glomeromycotina, as expected by their uncultivability and host dependency. Similar to endobacteria of insects, the endobacteria of fungi show a range of behaviours from mutualism to antagonism. Emerging results suggest that some benefits given by the endobacteria to their plant-associated fungal host may propagate to the interacting plant, giving rise to a three-level inter-domain interaction.


Assuntos
Bactérias/genética , Fungos/classificação , Fungos/fisiologia , Simbiose , Tenericutes/genética , Evolução Biológica , Tenericutes/fisiologia
17.
Environ Microbiol Rep ; 9(5): 658-667, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28799720

RESUMO

ITS primers commonly used to describe soil fungi are flawed for AMF although it is unknown the extent to which they distort the interpretation of community patterns. Here, we focus on how the use of a specific ITS2 fungal barcoding primer pair biased for AMF changes the interpretation of AMF community patterns from three mountain vineyards compared to a novel AMF-specific approach on the 18S. We found that although discrepancies were present in the taxonomic composition of the two resulting datasets, the estimation of diversity patterns among AMF communities was similar and resulted in both primer systems being able to correctly assess the community-structuring effect of location, compartment (root vs. soil) and environment. Both methodologies made it possible to detect the same alpha-diversity trend among the locations under study but not between root and soil transects. We show that the ITS2 primer system for fungal barcoding provides a good estimate of both AMF community structure and relation to environmental variables. However, this primer system does not fit in with cross-compartment surveys (roots vs. soil) as it can underestimate AMF diversity in soil samples. When specifically focusing on AMF, the 18S primer system resulted in wide coverage and marginal non-target amplification.


Assuntos
Código de Barras de DNA Taxonômico , DNA Fúngico , DNA Intergênico , Micorrizas/classificação , Micorrizas/genética , Raízes de Plantas/microbiologia , RNA Ribossômico 18S/genética , Microbiologia do Solo , Biodiversidade , Filogenia , Análise de Sequência de DNA
18.
IMA Fungus ; 8(2): 245-257, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29242774

RESUMO

Endogonales is a lineage of early diverging fungi within Mucoromycota. Many species in this order produce small sporophores ("sporocarps") containing a large number of zygospores, and many species form symbioses with plants. However, due to limited collections, subtle morphological differentiation, difficulties in growing these organisms in vitro, and idiosyncrasies in their rDNA that make PCR amplification difficult, the systematics and character evolution of these fungi have been challenging to resolve. To overcome these challenges we generated a multigene phylogeny of Endogonales using sporophores collected over the past three decades from four continents. Our results show that Endogonales harbour significant undescribed diversity and form two deeply divergent and well-supported phylogenetic clades, which we delimit as the families Endogonaceae and Densosporaceae fam. nov. The family Densosporaceae consists of the genus Densospora,Sphaerocreas pubescens, and many diverse lineages known only from environmental DNA sequences of plant-endosymbiotic fungi. Within Endogonaceae there are two clades. One corresponds to Endogone and includes the type species, E. pisiformis. Species of Endogone are characterized by above- and below-ground sporophores, a hollow and infolded sporophore form, a loose zygosporangial hyphal mantle, homogeneous gametangia, and an enigmatic trophic mode with no evidence of ectomycorrhizal association for most species. For the other clade we introduce a new generic name, Jimgerdemannia gen. nov. Members of that genus (J. flammicorona and J. lactiflua species complexes, and an undescribed species) are characterized by hypogeous sporophores with a solid gleba, a well-developed zygosporangial hyphal mantle, heterogeneous gametangia, and an ectomycorrhizal trophic mode. Future studies on Densosporaceae and Endogonaceae will be important for understanding fungal innovations including evolution of macroscopic sporophores and symbioses with plants.

19.
Methods Mol Biol ; 1399: 29-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26791495

RESUMO

The study of the so-called unculturable bacteria is still considered a challenging task. However, given recent improvements in the sensitivity of culture-free approaches, the identification and characterization of such microbes in complex biological samples is now possible. In this chapter we report how endobacteria thriving inside arbuscular mycorrhizal fungi (AMF), which are themselves obligate biotrophs of plants, can be studied using a combination of in vitro culture, molecular biology, and microscopy techniques.


Assuntos
Bactérias/genética , Micorrizas/genética , Plantas/microbiologia , RNA Ribossômico 16S/genética , Genoma Bacteriano , Filogenia , Esporos Fúngicos/genética , Simbiose/genética
20.
ISME J ; 8(2): 257-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24008325

RESUMO

Arbuscular mycorrhizal fungi (AMF) are important members of the plant microbiome. They are obligate biotrophs that colonize the roots of most land plants and enhance host nutrient acquisition. Many AMF themselves harbor endobacteria in their hyphae and spores. Two types of endobacteria are known in Glomeromycota: rod-shaped Gram-negative Candidatus Glomeribacter gigasporarum, CaGg, limited in distribution to members of the Gigasporaceae family, and coccoid Mollicutes-related endobacteria, Mre, widely distributed across different lineages of AMF. The goal of the present study is to investigate the patterns of distribution and coexistence of the two endosymbionts, CaGg and Mre, in spore samples of several strains of Gigaspora margarita. Based on previous observations, we hypothesized that some AMF could host populations of both endobacteria. To test this hypothesis, we performed an extensive investigation of both endosymbionts in G. margarita spores sampled from Cameroonian soils as well as in the Japanese G. margarita MAFF520054 isolate using different approaches (molecular phylotyping, electron microscopy, fluorescence in situ hybridization and quantitative real-time PCR). We found that a single AMF host can harbour both types of endobacteria, with Mre population being more abundant, variable and prone to recombination than the CaGg one. Both endosymbionts seem to retain their genetic and lifestyle peculiarities regardless of whether they colonize the host alone or together. These findings show for the first time that fungi support an intracellular bacterial microbiome, in which distinct types of endobacteria coexist in a single cell.


Assuntos
Burkholderiaceae/fisiologia , Citoplasma/microbiologia , Glomeromycota/fisiologia , Micorrizas/fisiologia , Simbiose/fisiologia , Tenericutes/fisiologia , Burkholderiaceae/genética , Burkholderiaceae/ultraestrutura , DNA Ribossômico/genética , Glomeromycota/genética , Glomeromycota/ultraestrutura , Hibridização in Situ Fluorescente , Microbiota/genética , Microbiota/fisiologia , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Micorrizas/genética , Micorrizas/ultraestrutura , Filogenia , Raízes de Plantas/microbiologia , Densidade Demográfica , RNA Ribossômico 16S/genética , Esporos Fúngicos/fisiologia , Tenericutes/genética , Tenericutes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa