Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39302358

RESUMO

BACKGROUND: Longitudinal Displacement (LD) is the relative motion of the intima-media upon adventitia of the arterial wall during the cardiac cycle, probably linked to atherosclerosis. It has a direction, physiologically first backward in its main components with respect to the arterial flow. Here, LD was investigated in various disease and in presence of a unilateral carotid stent. METHODS: Carotid acquisitions were performed by ultrasound imaging on both body sides of 75 participants (150 Arteries). LD was measured in its percent quantity and direction. RESULTS: Obesity (p = 0.001) and carotid plaques (p = 0.01) were independently associated to quantity decrease of LD in the whole population. In a subgroup analysis, it was respectively 143% in healthy (n = 48 carotids), 129% (n = 34) in presence of cardiovascular risk factors, 121% (n = 20) in MACE patients, 119% (n = 24) in the carotid contralateral to a stent, 110% (n = 24) in carotids with stents. Regarding the direction of LD, in a subgroup analysis an inverted movement was identified in aged (p = 0.001) and diseased (p = 0.001) participants who also showed less quantity of LD (p = 0.001), but independently with age only (p = 0.002) in the whole population. CONCLUSIONS: This observational study suggests that LD within carotid wall layers is lower additively with ageing, cardiovascular risk factors, cardiovascular diseases, and stent. Even if stent is surely beneficial, these data might shed some light on stent restenosis, emphasising the need for interventional studies.

2.
Bioengineering (Basel) ; 10(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36978676

RESUMO

Primary Central Nervous System Lymphoma (PCNSL) is an aggressive neoplasm with a poor prognosis. Although therapeutic progresses have significantly improved Overall Survival (OS), a number of patients do not respond to HD-MTX-based chemotherapy (15-25%) or experience relapse (25-50%) after an initial response. The reasons underlying this poor response to therapy are unknown. Thus, there is an urgent need to develop improved predictive models for PCNSL. In this study, we investigated whether radiomics features can improve outcome prediction in patients with PCNSL. A total of 80 patients diagnosed with PCNSL were enrolled. A patient sub-group, with complete Magnetic Resonance Imaging (MRI) series, were selected for the stratification analysis. Following radiomics feature extraction and selection, different Machine Learning (ML) models were tested for OS and Progression-free Survival (PFS) prediction. To assess the stability of the selected features, images from 23 patients scanned at three different time points were used to compute the Interclass Correlation Coefficient (ICC) and to evaluate the reproducibility of each feature for both original and normalized images. Features extracted from Z-score normalized images were significantly more stable than those extracted from non-normalized images with an improvement of about 38% on average (p-value < 10-12). The area under the ROC curve (AUC) showed that radiomics-based prediction overcame prediction based on current clinical prognostic factors with an improvement of 23% for OS and 50% for PFS, respectively. These results indicate that radiomics features extracted from normalized MR images can improve prognosis stratification of PCNSL patients and pave the way for further study on its potential role to drive treatment choice.

3.
Int J Comput Assist Radiol Surg ; 18(10): 1849-1856, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37083973

RESUMO

PURPOSE: Primary central nervous system lymphoma (PCNSL) is a rare, aggressive form of extranodal non-Hodgkin lymphoma. To predict the overall survival (OS) in advance is of utmost importance as it has the potential to aid clinical decision-making. Though radiomics-based machine learning (ML) has demonstrated the promising performance in PCNSL, it demands large amounts of manual feature extraction efforts from magnetic resonance images beforehand. deep learning (DL) overcomes this limitation. METHODS: In this paper, we tailored the 3D ResNet to predict the OS of patients with PCNSL. To overcome the limitation of data sparsity, we introduced data augmentation and transfer learning, and we evaluated the results using r stratified k-fold cross-validation. To explain the results of our model, gradient-weighted class activation mapping was applied. RESULTS: We obtained the best performance (the standard error) on post-contrast T1-weighted (T1Gd)-area under curve [Formula: see text], accuracy [Formula: see text], precision [Formula: see text], recall [Formula: see text] and F1-score [Formula: see text], while compared with ML-based models on clinical data and radiomics data, respectively, further confirming the stability of our model. Also, we observed that PCNSL is a whole-brain disease and in the cases where the OS is less than 1 year, it is more difficult to distinguish the tumor boundary from the normal part of the brain, which is consistent with the clinical outcome. CONCLUSIONS: All these findings indicate that T1Gd can improve prognosis predictions of patients with PCNSL. To the best of our knowledge, this is the first time to use DL to explain model patterns in OS classification of patients with PCNSL. Future work would involve collecting more data of patients with PCNSL, or additional retrospective studies on different patient populations with rare diseases, to further promote the clinical role of our model.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Aprendizado Profundo , Linfoma , Humanos , Estudos Retrospectivos , Linfoma/diagnóstico por imagem , Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa