Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 6(50): 34866-34875, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963970

RESUMO

We report a highly stretchable sensor with low-concentration (1.5 wt %) single-walled carbon nanotubes (SWCNTs) on flexible polyether ester urethane (PEEU) yarn, fabricated using a low hydrothermal process at 90 °C. Although SWCNTs restrict the PEEU polymer chain mobility, the resulting ductility of our nanocomposites reduces only by 16.5% on average, initially from 667.3% elongation at break to 557.2%. The resulting electrical resistivity of our nanocomposites can be controlled systematically by the number of hydrothermal cycles. A high gauge factor value of 4.84 is achieved at a tensile strain below 100%, and it increases up to 28.5 with applying a tensile strain above 450%. We find that the piezoresistivity of our nanocomposite is sensitive to temperature variations of 25-85 °C due to the hopping effect, which promotes more charge transport at elevated temperatures. Our nanocomposites offer both a high sensitivity and a large strain sensing range, which is achieved with a relatively simple fabrication technique and low concentration of SWCNTs.

2.
Nanomaterials (Basel) ; 10(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260211

RESUMO

Magnetic reduced graphene oxide (MRGO) sheets were prepared by embedding Fe3O4 nanoparticles on polyvinylpyrrolidone (PVP) and poly(diallyldimethylammonium chloride) (PDDA)-modified graphene oxide (GO) sheets for bacteria capture and destruction under a high-frequency magnetic field (HFMF). The characteristics of MRGO sheets were evaluated systematically by transmission electron microscopy (TEM), scanning electron microscopy (SEM), zeta potential measurement, X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS). TEM observation revealed that magnetic nanoparticles (8-10 nm) were dispersed on MRGO sheets. VSM measurements confirmed the superparamagnetic characteristics of the MRGO sheets. Under HFMF exposure, the temperature of MRGO sheets increased from 25 to 42 °C. Furthermore, we investigated the capability of MRGO sheets to capture and destroy bacteria (Staphylococcus aureus). The results show that MRGO sheets could capture bacteria and kill them through an HFMF, showing a great potential in magnetic separation and antibacterial application.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa