Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(41): 8372-8378, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37818603

RESUMO

The synthesis of aromatic compounds from biomass-derived furans is a key strategy in the pursuit of a sustainable economy. Within this field, a Diels-Alder/aromatization cascade reaction with chitin-based furans is emerging as a powerful tool for the synthesis of nitrogen-containing aromatics. In this study we present the conversion of chitin-based 3-acetamido-furfural (3A5F) into an array of di- and tri-substituted anilides in good to high yields (62-90%) via a hydrazone mediated Diels-Alder/aromatization sequence. The addition of acetic anhydride expands the dienophile scope and improves yields. Moreover, replacing the typically used dimethyl hydrazone with its pyrrolidine analogue, shortens reaction times and further increases yields. The hydrazone auxiliary is readily converted into either an aldehyde or a nitrile group, thereby providing a plethora of functionalized anilides. The developed procedure was also applied to 3-acetamido-5-acetylfuran (3A5AF) to successfully prepare a phthalimide.

2.
Molecules ; 27(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630661

RESUMO

European aspen (Populus tremula (L.) (Salicaceae)) bark is a promising raw material in multi-step biorefinery schemes due to its wide availability and higher content of secondary metabolites in comparison to stem wood biomass. The main objective of this study was to investigate the major cell wall component-enriched fractions that were obtained from aspen bark residue after extractives isolation, primarily focusing on integration of separated lignin fractions and cellulose-enriched bark residue into complex valorization pathways. The "lignin first" biorefinery approach was applied using mild organosolv delignification. The varying solvent systems and process conditions for optimal delignification of residual aspen bark biomass were studied using a response surface methodology approach. The conditions for maximum process desirability at which the highest amount of lignin-enriched fraction was separated were as follows: 20-h treatment time at 117 °C, butanol/water 4:1 (v/v) solvent system with solid to liquid ratio of 1 to 10. At optimal separation conditions, lignin-enriched fraction exhibited a higher content of ß-O-4 linkages vs. C-C linkages content in its structure as well as a high amount of hydroxyl groups, being attractive for its further valorization. At the same time, the content of glucose in products of cellulose-enriched residue hydrolysis was 52.1%, increased from 10.3% in untreated aspen bark. This indicates that this fraction is a promising raw material for obtaining cellulose and fermentable glucose. These results show that mild organosolv delignification of extracted tree bark can be proposed as a novel biorefinery approach for isolation of renewable value-added products with various application potentials.


Assuntos
Lignina , Casca de Planta , Celulose/química , Glucose , Lignina/química , Solventes/química
3.
Molecules ; 26(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800893

RESUMO

In order to replace the huge amounts of copper salts used in citrus orchards, alternatives have been sought in the form of organic compounds of natural origin with activity against the causative agent of citrus canker, the phytopathogen Xanthomonas citri subsp. Citri. We synthesized a series of 4-alkoxy-1,2-benzene diols (alkyl-BDOs) using 1,2,4-benzenetriol (BTO) as a starting material through a three-step synthesis route and evaluated their suitability as antibacterial compounds. Our results show that alkyl ethers derived from 1,2,4-benzenetriol have bactericidal activity against X. citri, disrupting the bacterial cell membrane within 15 min. Alkyl-BDOs were also shown to remain active against the bacteria while in solution, and presented low toxicity to (human) MRC-5 cells. Therefore, we have demonstrated that 1,2,4-benzenetriol-a molecule that can be obtained from agricultural residues-is an adequate precursor for the synthesis of new compounds with activity against X. citri.


Assuntos
Antibacterianos/farmacologia , Derivados de Benzeno/farmacologia , Citrus/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Xanthomonas/patogenicidade , Antibacterianos/química , Derivados de Benzeno/química , Proliferação de Células , Citrus/microbiologia , Fibroblastos/citologia , Humanos , Folhas de Planta/microbiologia
4.
Molecules ; 25(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785147

RESUMO

A novel biobased monomer for the preparation of thermally reversible networks based on the Diels-Alder reaction was synthesized from jatropha oil. The oil was epoxidized and subsequently reacted with furfurylamine to attach furan groups via an epoxide ring opening reaction. However, furfurylamine also reacted with the ester groups of the triglycerides via aminolysis, thus resulting in short-chain molecules that ultimately yielded brittle thermally reversible polymers upon cross-linking via a Diels-Alder reaction. A full-factorial experimental design was used in finding the optimum conditions to minimize ester aminolysis and to maximize the epoxide ring opening reaction as well as the number of furans attached to the modified oil. The optimum conditions were determined experimentally and were found to be 80 °C, 24 h, 1:1 molar ratio, with 50 mol % of LiBr with respect to the modified oil, resulting in 35% of ester conversion, 99% of epoxide conversion, and an average of 1.32 furans/triglyceride. Ultimately, further optimization by a statistical approach led to an average of 2.19 furans per triglyceride, which eventually yielded a flexible network upon cross-linking via a Diels-Alder reaction instead of the brittle one obtained when the furan-functionalization reaction was not optimized.


Assuntos
Furanos/química , Jatropha/química , Óleos de Plantas/química , Brometos/química , Catálise , Reação de Cicloadição , Compostos de Epóxi/química , Jatropha/metabolismo , Compostos de Lítio/química , Temperatura , Triglicerídeos/química
5.
Angew Chem Int Ed Engl ; 56(44): 13596-13600, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28841767

RESUMO

Artificial metalloenzymes (ArMs) are hybrid catalysts that offer a unique opportunity to combine the superior performance of natural protein structures with the unnatural reactivity of transition-metal catalytic centers. Therefore, they provide the prospect of highly selective and active catalytic chemical conversions for which natural enzymes are unavailable. Herein, we show how by rationally combining robust site-specific phosphine bioconjugation methods and a lipid-binding protein (SCP-2L), an artificial rhodium hydroformylase was developed that displays remarkable activities and selectivities for the biphasic production of long-chain linear aldehydes under benign aqueous conditions. Overall, this study demonstrates that judiciously chosen protein-binding scaffolds can be adapted to obtain metalloenzymes that provide the reactivity of the introduced metal center combined with specifically intended product selectivity.


Assuntos
Aldeídos/química , Materiais Biomiméticos/química , Metaloproteínas/química , Proteína Multifuncional do Peroxissomo-2/química , Fosfinas/química , Ródio/química , Catálise , Humanos , Modelos Moleculares
6.
J Am Chem Soc ; 138(28): 8900-11, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27310182

RESUMO

The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (ß-O-4)-(ß-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected ß-O-4, ß-5, and ß-ß structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.


Assuntos
Lignina/química , Solventes/química , Acetais/química , Catálise , Dimerização , Formaldeído/química , Concentração de Íons de Hidrogênio , Polimerização
7.
J Am Chem Soc ; 137(23): 7456-67, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26001165

RESUMO

Conversion of lignin into well-defined aromatic chemicals is a highly attractive goal but is often hampered by recondensation of the formed fragments, especially in acidolysis. Here, we describe new strategies that markedly suppress such undesired pathways to result in diverse aromatic compounds previously not systematically targeted from lignin. Model studies established that a catalytic amount of triflic acid is very effective in cleaving the ß-O-4 linkage, most abundant in lignin. An aldehyde product was identified as the main cause of side reactions under cleavage conditions. Capturing this unstable compound by reaction with diols and by in situ catalytic hydrogenation or decarbonylation lead to three distinct groups of aromatic compounds in high yields acetals, ethanol and ethyl aromatics, and methyl aromatics. Notably, the same product groups were obtained when these approaches were successfully extended to lignin. In addition, the formation of higher molecular weight side products was markedly suppressed, indicating that the aldehyde intermediates play a significant role in these processes. The described strategy has the potential to be generally applicable for the production of interesting aromatic compounds from lignin.

8.
Bioorg Med Chem ; 22(20): 5657-77, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25126712

RESUMO

Oxidation reactions are an important part of the synthetic organic chemist's toolkit and continued advancements have, in many cases, resulted in high yields and selectivities. This review aims to give an overview of the current state-of-the-art in oxygenation reactions using both chemical and enzymatic processes, the design principles applied to date and a possible future in the direction of hybrid catalysts combining the best of chemical and natural design.


Assuntos
Metaloproteínas/química , Permanganato de Potássio/química , Catálise , Metaloproteínas/metabolismo , Modelos Moleculares , Estrutura Molecular , Oxirredução
9.
Chempluschem ; 89(6): e202300616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38305754

RESUMO

Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri, is one of the main threats to citrus fruit production. Several phenolic compounds active against X. citri have been described in recent years. Benzene-1,2,4-triol is a bio-based phenolic compound that has shown high potential as a scaffold for the synthesis of new anti-X. citri compounds. However, benzene-1,2,4-triol is prone to oxidative dimerization. We evaluated the antibacterial activity of benzene-1,2,4-triol, its oxidized dimers, and analogous compounds. Benzene-1,2,4-triol has a low inhibitory concentration against X. citri (0.05 mM) and is also active against other bacterial species. Spontaneous formation of benzenetriol dimers (e. g. by contact with oxygen in aqueous solution) reduced the antimicrobial activity of benzenetriol solutions. Dimers themselves displayed lower antibacterial activity and where shown to be more stable in solution. Unlike many other phenolic compounds with anti-X. citri activity, benzene-1,2,4-triol does not act by membrane permeabilization, but seems to limit the availability of iron to cells. Benzene-1,2,4-triol is widely recognized as toxic - our results indicate that the toxicity of benzene-1,2,4-triol is largely due to spontaneously formed dimers. Stabilization of benzene-1,2,4-triol will be required to allow the safe use of this compound.


Assuntos
Antibacterianos , Dimerização , Testes de Sensibilidade Microbiana , Xanthomonas , Xanthomonas/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia
10.
ACS Sustain Chem Eng ; 12(20): 7724-7738, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38783842

RESUMO

Lignocellulose biorefining is a promising technology for the sustainable production of chemicals and biopolymers. Usually, when one component is focused on, the chemical nature and yield of the others are compromised. Thus, one of the bottlenecks in biomass biorefining is harnessing the maximum value from all of the lignocellulosic components. Here, we describe a mild stepwise process in a flow-through setup leading to separate flow-out streams containing cinnamic acid derivatives, glucose, xylose, and lignin as the main components from different herbaceous sources. The proposed process shows that minimal degradation of the individual components and conservation of their natural structure are possible. Under optimized conditions, the following fractions are produced from wheat straw based on their respective contents in the feed by the ALkaline ACid ENzyme process: (i) 78% ferulic acid from a mild ALkali step, (ii) 51% monomeric xylose free of fermentation inhibitors by mild ACidic treatment, (iii) 82% glucose from ENzymatic degradation of cellulose, and (iv) 55% native-like lignin. The benefits of using the flow-through setup are demonstrated. The retention of the lignin aryl ether structure was confirmed by HSQC NMR, and this allowed monomers to form from hydrogenolysis. More importantly, the crude xylose-rich fraction was shown to be suitable for producing polyhydroxybutyrate bioplastics. The direct use of the xylose-rich fraction by means of the thermophilic bacteria Schlegelella thermodepolymerans matched 91% of the PHA produced with commercial pure xylose, achieving 138.6 mgPHA/gxylose. Overall, the ALACEN fractionation method allows for a holistic valorization of the principal components of herbaceous biomasses.

11.
Org Biomol Chem ; 11(43): 7621-30, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24105028

RESUMO

A novel method for the parallel synthesis of peptide-biocargo conjugates was developed that utilizes affinity purification for fast isolation of the conjugates in order to avoid time consuming HPLC purification. The methodology was applied to create two libraries of cell-penetrating peptide (CPP)-PNA705 conjugates from parallel-synthesized peptide libraries. The conjugates were tested for their ability to induce splicing redirection in HeLa pLuc705 cells. The results demonstrate how the novel methodology can be applied for screening purposes in order to find suitable CPP-biocargo combinations and further optimization of CPPs.


Assuntos
Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/metabolismo , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Peptídeos Penetradores de Células/química , Cromatografia Líquida de Alta Pressão , Células HeLa , Humanos , Conformação Molecular , Biblioteca de Peptídeos , Splicing de RNA/genética , RNA Mensageiro/genética
12.
Biotechnol Adv ; 68: 108230, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37558187

RESUMO

Searching for renewable alternatives for fossil carbon resources to produce chemicals, fuels and materials is essential for the development of a sustainable society. Lignin, a major component of lignocellulosic biomass, is an abundant renewable source of aromatics and is currently underutilized as it is often burned as an undesired side stream in the production of paper and bioethanol. This lignin harbors great potential as source of high value aromatic chemicals and materials. Biorefinery schemes focused on lignin are currently under development with aim of acquiring added value from lignin. However, the performance of these novel lignin-focused biorefineries is closely linked with the quality of extracted lignin in terms of the level of degradation and modification. Thus, the reactivity including the degradation pathways of the native lignin contained in the plant material needs to be understood in detail to potentially achieve higher value from lignin. Undegraded native-like lignin with an as close as possible structure to native lignin contained in the lignocellulosic plant material serves as a promising model lignin to support detailed studies on the structure and reactivity of native lignin, yielding key understanding for the development of lignin-focused biorefineries. The aim of this review is to highlight the different methods to attain "native-like" lignins that can be valuable for such studies. This is done by giving a basic introduction on what is known about the native lignin structure and the techniques and methods used to analyze it followed by an overview of the fractionation and isolation methods to isolate native-like lignin. Finally, a perspective on the isolation and use of native-like lignin is provided, showing the great potential that this type of lignin brings for understanding the effect of different biomass treatments on the native lignin structure.


Assuntos
Carbono , Lignina , Lignina/química , Biomassa
13.
ChemSusChem ; 16(10): e202300168, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-36826410

RESUMO

Combining solid acid catalysts with enzyme reactions in aqueous environments is challenging because either very acidic conditions inactivate the enzymes, or the solid acid catalyst is neutralized. In this study, Amberlyst-15 encapsulated in polydimethylsiloxane (Amb-15@PDMS) is used to deprotect the lignin depolymerization product G-C2 dioxolane phenol in a buffered system at pH 6.0. This reaction is directly coupled with the biocatalytic reduction of the released homovanillin to homovanillyl alcohol by recombinant horse liver alcohol dehydrogenase, which is subsequently acylated by the promiscuous acyltransferase/hydrolase PestE_I208A_L209F_N288A in a one-pot system. The deprotection catalyzed with Amb-15@PDMS attains up to 97 % conversion. Overall, this cascade enables conversions of up to 57 %.


Assuntos
Dioxolanos , Lignina , Animais , Cavalos , Lignina/metabolismo , Fenol , Biocatálise , Catálise , Fenóis
14.
Chemistry ; 17(17): 4680-98, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21480401

RESUMO

Many bioinspired transition-metal catalysts have been developed over the recent years. In this review the progress in the design and application of ligand systems based on peptides and DNA and the development of artificial metalloenzymes are reviewed with a particular emphasis on the combination of phosphane ligands with powerful molecular recognition and shape selectivity of biomolecules. The various approaches for the assembly of these catalytic systems will be highlighted, and the possibilities that the use of the building blocks of Nature provide for catalyst optimisation strategies are discussed.


Assuntos
DNA Catalítico/química , Metaloproteínas/química , Peptídeos/química , Elementos de Transição/química , Catálise , Cristalografia por Raios X , Ligantes , Estrutura Molecular , Estereoisomerismo
15.
ChemSusChem ; 14(23): 5186-5198, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34398518

RESUMO

The precise elucidation of native lignin structures plays a vital role for the development of "lignin first" strategies such as reductive catalytic fractionation. The structure of lignin and composition of the starting material has a major impact on the product yield and distribution. Here, the differences in structure of lignin from birch, pine, reed, and walnut shell were investigated by combining detailed analysis of the whole cell wall material, residual enzyme lignin, and milled wood lignin. The results of the 2D heteronuclear single quantum coherence NMR analysis could be correlated to the product from Ru/C-catalyzed hydrogenolysis if monomeric products from ferulate and p-coumaryl and its analogous units were also appropriately considered. Notably, residual polysaccharide constituents seemed to influence the selectivity towards hydroxy-containing monomers. The results reinforced the importance of adequate structural characterization and compositional analysis of the starting materials as well as distinct (dis)advantages of specific types of structural characterization and isolation methods for guiding valorization potential of different biomass feedstocks.

16.
ACS Sustain Chem Eng ; 9(5): 2388-2399, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33585085

RESUMO

Acidolysis in conjunction with stabilization of reactive intermediates has emerged as one of the most powerful methods of lignin depolymerization that leads to high aromatic monomer yields. In particular, stabilization of reactive aldehydes using ethylene glycol results in the selective formation of the corresponding cyclic acetals (1,3-dioxolane derivatives) from model compounds, lignin, and even from softwood lignocellulose. Given the high practical utility of this method for future biorefineries, a deeper understanding of the method is desired. Here, we aim to elucidate key mechanistic questions utilizing a combination of experimental and multilevel computational approaches. The multiscale computational protocol used, based on ReaxFF molecular dynamics, represents a realistic scenario, where a typical experimental setup can be reproduced confidently given the explicit molecules of the solute, catalyst, and reagent. The nudged elastic band (NEB) approach allowed us to characterize the key intermolecular interactions involved in the reaction paths leading to crucial intermediates and products. The high level of detail obtained clearly revealed for the first time the unique role of sulfuric acid as a proton donor and acceptor in lignin ß-O-4 acidolysis as well as the reaction pathways for ethylene glycol stabilization, and the difference in reactivity between compounds with different methoxy substituents.

17.
Biotechnol Biofuels ; 14(1): 127, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059129

RESUMO

BACKGROUND: Nowadays there is a strong trend towards a circular economy using lignocellulosic biowaste for the production of biofuels and other bio-based products. The use of enzymes at several stages of the production process (e.g., saccharification) can offer a sustainable route due to avoidance of harsh chemicals and high temperatures. For novel enzyme discovery, physically linked gene clusters targeting carbohydrate degradation in bacteria, polysaccharide utilization loci (PULs), are recognized 'treasure troves' in the era of exponentially growing numbers of sequenced genomes. RESULTS: We determined the biochemical properties and structure of a protein of unknown function (PUF) encoded within PULs of metagenomes from beaver droppings and moose rumen enriched on poplar hydrolysate. The corresponding novel bifunctional carbohydrate esterase (CE), now named BD-FAE, displayed feruloyl esterase (FAE) and acetyl esterase activity on simple, synthetic substrates. Whereas acetyl xylan esterase (AcXE) activity was detected on acetylated glucuronoxylan from birchwood, only FAE activity was observed on acetylated and feruloylated xylooligosaccharides from corn fiber. The genomic contexts of 200 homologs of BD-FAE revealed that the 33 closest homologs appear in PULs likely involved in xylan breakdown, while the more distant homologs were found either in alginate-targeting PULs or else outside PUL contexts. Although the BD-FAE structure adopts a typical α/ß-hydrolase fold with a catalytic triad (Ser-Asp-His), it is distinct from other biochemically characterized CEs. CONCLUSIONS: The bifunctional CE, BD-FAE, represents a new candidate for biomass processing given its capacity to remove ferulic acid and acetic acid from natural corn and birchwood xylan substrates, respectively. Its detailed biochemical characterization and solved crystal structure add to the toolbox of enzymes for biomass valorization as well as structural information to inform the classification of new CEs.

18.
Nat Commun ; 12(1): 5424, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521828

RESUMO

Stabilization of reactive intermediates is an enabling concept in biomass fractionation and depolymerization. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing; however undesired lignin condensation is a typical drawback for most acid-based DES fractionation processes. Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the desired 'stabilization' function for efficient lignocellulose fractionation, preserving the quality of all lignocellulose constituents. The obtained ethylene-glycol protected lignin displays high ß-O-4 content (up to 53 per 100 aromatic units) and can be readily depolymerized to distinct monophenolic products. The cellulose residues, free from condensed lignin particles, deliver up to 95.9 ± 2.12% glucose yield upon enzymatic digestion. The DES can be recovered with high yield and purity and re-used with good efficiency. Notably, we have shown that the reactivity of the ß-O-4 linkage in model compounds can be steered towards either cleavage or stabilization, depending on DES composition, demonstrating the advantage of the modular DES composition.

19.
ACS Omega ; 6(21): 13847-13857, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34095677

RESUMO

Oxidized starch can be efficiently prepared using H2O2 as an oxidant and iron(III) tetrasulfophthalocyanine (FePcS) as a catalyst, with properties in the same range as those for commercial oxidized starches prepared using NaOCl. Herein, we performed an in-depth study on the oxidation of potato starch focusing on the mode of operation of this green catalytic system and its fate as the reaction progresses. At optimum batch reaction conditions (H2O2/FePcS molar ratio of 6000, 50 °C, and pH 10), a high product yield (91 wt %) was obtained with substantial degrees of substitution (DSCOOH of 1.4 and DSCO of 4.1 per 100 AGU) and significantly reduced viscosity (197 mPa·s) by dosing H2O2. Model compound studies showed limited activity of the catalyst for C6 oxidation, indicating that carboxylic acid incorporation likely results from C-C bond cleavage events. The influence of the process conditions on the stability of the FePcS catalyst was studied using UV-vis and Raman spectroscopic techniques, revealing that both increased H2O2 concentration and temperature promote the irreversible degradation of the FePcS catalyst at high pH. The rate and extent of FePcS degradation were found to strongly depend on the initial H2O2 concentration where also the rapid decomposition of H2O2 by FePcS occurs. These results explain why the slow addition of H2O2 in combination with low FePcS catalyst concentration is beneficial for the efficient application in starch oxidation.

20.
ChemSusChem ; 13(17): 4468-4477, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32103576

RESUMO

A mild lignin-first acidolysis process (140 °C, 40 min) was developed using the benign solvent dimethyl carbonate (DMC) and ethylene glycol (EG) as a stabilization agent/solvent to produce a high yield of aromatic monophenols directly from softwood lignocellulose (pine, spruce, cedar, and Douglas fir) with a depolymerization efficiency of 77-98 %. Under the optimized conditions (140 °C, 40 min, 400 wt % EG and 2 wt % H2 SO4 to pinewood), up to 9 wt % of the aromatic monophenol was produced, reaching a degree of delignification in pinewood of 77 %. Cellulose was also preserved, as evidenced by a 85 % glucose yield after enzymatic digestion. An in-depth analysis of the depolymerization oil was conducted by using GC-MS, HPLC, 2 D-NMR, and size-exclusion chromatography, which provided structural insights into lignin-derived dimers and oligomers and the composition of the sugars and derived molecules. Mass balance evaluation was performed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa