Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
PLoS Biol ; 22(1): e3002443, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227580

RESUMO

The minimum O2 needed to fuel the demand of aquatic animals is commonly observed to increase with temperature, driven by accelerating metabolism. However, recent measurements of critical O2 thresholds ("Pcrit") reveal more complex patterns, including those with a minimum at an intermediate thermal "optimum". To discern the prevalence, physiological drivers, and biogeographic manifestations of such curves, we analyze new experimental and biogeographic data using a general dynamic model of aquatic water breathers. The model simulates the transfer of oxygen from ambient water through a boundary layer and into animal tissues driven by temperature-dependent rates of metabolism, diffusive gas exchange, and ventilatory and circulatory systems with O2-protein binding. We find that a thermal optimum in Pcrit can arise even when all physiological rates increase steadily with temperature. This occurs when O2 supply at low temperatures is limited by a process that is more temperature sensitive than metabolism, but becomes limited by a less sensitive process at warmer temperatures. Analysis of published species respiratory traits suggests that this scenario is not uncommon in marine biota, with ventilation and circulation limiting supply under cold conditions and diffusion limiting supply at high temperatures. Using occurrence data, we show that species with these physiological traits inhabit lowest O2 waters near the optimal temperature for hypoxia tolerance and are restricted to higher O2 at temperatures above and below this optimum. Our results imply that hypoxia tolerance can decline under both cold and warm conditions and thus may influence both poleward and equatorward species range limits.


Assuntos
Hipóxia , Oxigênio , Animais , Temperatura , Oxigênio/metabolismo , Respiração , Água
2.
Proc Natl Acad Sci U S A ; 119(43): e2210617119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252022

RESUMO

Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. Here, we present stable isotope and trace-element data from carbonate constituents in the Bahamas, including ooids, corals, foraminifera, and algae. We use geochemical fingerprinting to demonstrate that carbonate mud cannot be sourced from the abrasion and mixture of any combination of these macroscopic grains. Instead, an inverse Bayesian mixing model requires the presence of an additional aragonite source. We posit that this source represents a direct seawater precipitate. We use geological and geochemical data to show that "whitings" are unlikely to be the dominant source of this precipitate and, instead, present a model for mud precipitation on the bank margins that can explain the geographical distribution, clumped-isotope thermometry, and stable isotope signature of carbonate mud. Next, we address the enigma of why mud and ooids are so abundant in the Bahamas, yet so rare in the rest of the world: Mediterranean outflow feeds the Bahamas with the most alkaline waters in the modern ocean (>99.7th-percentile). Such high alkalinity appears to be a prerequisite for the nonskeletal carbonate factory because, when Mediterranean outflow was reduced in the Miocene, Bahamian carbonate export ceased for 3-million-years. Finally, we show how shutting off and turning on the shallow carbonate factory can send ripples through the global climate system.


Assuntos
Carbonatos , Sedimentos Geológicos , Teorema de Bayes , Carbonato de Cálcio , Carbonatos/análise , Água do Mar
3.
Nature ; 614(7949): 626-628, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792895
4.
Glob Chang Biol ; 23(10): 4019-4028, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28657206

RESUMO

Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO2 , at which blood is 50% saturated (P50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P50 depths (i.e., the vertical position in the water column at which ambient pO2 is equal to species-specific blood P50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats.


Assuntos
Mudança Climática , Atum , Migração Animal , Animais , Clima , Ecossistema , Oxigênio , Oceano Pacífico , Dinâmica Populacional
5.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25165769

RESUMO

Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent.


Assuntos
Comportamento Animal/fisiologia , Borboletas/fisiologia , Mudança Climática , Clima Tropical , Adaptação Fisiológica , Animais , Biofísica , América Central , Feminino , Estados Unidos
6.
Nat Commun ; 15(1): 900, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296952

RESUMO

The ability to anticipate marine habitat shifts responding to climate variability has high scientific and socioeconomic value. Here we quantify interannual-to-decadal predictability of habitat shifts by combining trait-based aerobic habitat constraints with a suite of initialized retrospective Earth System Model forecasts, for diverse marine ecotypes in the North American Large Marine Ecosystems. We find that aerobic habitat viability, defined by joint constraints of temperature and oxygen on organismal energy balance, is potentially predictable in the upper-600 m ocean, showing a substantial improvement over a simple persistence forecast. The skillful multiyear predictability is dominated by the oxygen component in most ecosystems, yielding higher predictability than previously estimated based on temperature alone. Notable predictability differences exist among ecotypes differing in temperature sensitivity of hypoxia vulnerability, especially along the northeast coast with predictability timescale ranging from 2 to 10 years. This tool will be critical in predicting marine habitat shifts in face of a changing climate.


Assuntos
Ecossistema , Oxigênio , Temperatura , Estudos Retrospectivos , Mudança Climática , Oceanos e Mares
7.
Proc Biol Sci ; 280(1765): 20131149, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23825212

RESUMO

Whether movement will enable organisms to alleviate thermal stress is central to the biodiversity implications of climate change. We use the temperature-dependence of ectotherm performance to investigate the fitness consequences of movement. Movement to an optimal location within a 50 km radius will only offset the fitness impacts of climate change by 2100 in 5 per cent of locations globally. Random movement carries an 87 per cent risk of further fitness detriment. Mountainous regions with high temperature seasonality (i.e. temperate areas) not only offer the greatest benefit from optimal movement but also the most severe fitness consequences if an organism moves to the wrong location. Doubling dispersal capacity would provide modest benefit exclusively to directed dispersers in topographically diverse areas. The benefits of movement for escaping climate change are particularly limited in the tropics, where fitness impacts will be most severe. The potential of movement to lessen climate change impacts may have been overestimated.


Assuntos
Mudança Climática , Temperatura Alta , Insetos/classificação , Insetos/fisiologia , Movimento , Adaptação Fisiológica , Animais
8.
Nat Commun ; 14(1): 3811, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369654

RESUMO

In an ocean that is rapidly warming and losing oxygen, accurate forecasting of species' responses must consider how this environmental change affects fundamental aspects of their physiology. Here, we develop an absolute metabolic index (ΦA) that quantifies how ocean temperature, dissolved oxygen and organismal mass interact to constrain the total oxygen budget an organism can use to fuel sustainable levels of aerobic metabolism. We calibrate species-specific parameters of ΦA with physiological measurements for red abalone (Haliotis rufescens) and purple urchin (Strongylocentrotus purpuratus). ΦA models highlight that the temperature where oxygen supply is greatest shifts cooler when water loses oxygen or organisms grow larger, providing a mechanistic explanation for observed thermal preference patterns. Viable habitat forecasts are disproportionally deleterious for red abalone, revealing how species-specific physiologies modulate the intensity of a common climate signal, captured in the newly developed ΦA framework.


Assuntos
Gastrópodes , Oxigênio , Animais , Oxigênio/metabolismo , Água , Temperatura , Clima , Mudança Climática , Oceanos e Mares , Aquecimento Global
9.
Ecology ; 93(3): 449-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22624199

RESUMO

Evolutionary history and physiology mediate species responses to climate change. Tropical species that do not naturally experience high temperature variability have a narrow thermal tolerance compared to similar taxa at temperate latitudes and could therefore be most vulnerable to warming. However, the thermal adaptation of a species may also be influenced by spatial temperature variations over its geographical range. Spatial climate gradients, especially from topography, may also broaden thermal tolerance and therefore act to buffer warming impacts. Here we show that for low-seasonality environments, high spatial heterogeneity in temperature correlates significantly with greater warming tolerance in insects globally. Based on this relationship, we find that climate change projections of direct physiological impacts on insect fitness highlight the vulnerability of tropical lowland areas to future warming. Thus, in addition to seasonality, spatial heterogeneity may play a critical role in thermal adaptation and climate change impacts particularly in the tropics.


Assuntos
Aquecimento Global , Insetos/fisiologia , Clima Tropical , Animais , Evolução Biológica , Ecossistema , Aptidão Genética , Modelos Biológicos
10.
Science ; 375(6576): 25-26, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34990227

RESUMO

Fossil records from tropical oceans predict biodiversity loss in a warmer world.


Assuntos
Oceanos e Mares
11.
Proc Natl Acad Sci U S A ; 105(18): 6668-72, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18458348

RESUMO

The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.


Assuntos
Ecossistema , Efeito Estufa , Insetos/fisiologia , Temperatura , Adaptação Fisiológica , Animais , Insetos/classificação , Clima Tropical
12.
Proc Biol Sci ; 276(1664): 1939-48, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19324762

RESUMO

Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.


Assuntos
Aclimatação , Efeito Estufa , Lagartos/fisiologia , Clima Tropical , Animais , Temperatura Corporal , Ecossistema , Geografia , Lagartos/classificação , Filogenia , Porto Rico , Temperatura
13.
Science ; 361(6405): 916-919, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166490

RESUMO

Insect pests substantially reduce yields of three staple grains-rice, maize, and wheat-but models assessing the agricultural impacts of global warming rarely consider crop losses to insects. We use established relationships between temperature and the population growth and metabolic rates of insects to estimate how and where climate warming will augment losses of rice, maize, and wheat to insects. Global yield losses of these grains are projected to increase by 10 to 25% per degree of global mean surface warming. Crop losses will be most acute in areas where warming increases both population growth and metabolic rates of insects. These conditions are centered primarily in temperate regions, where most grain is produced.


Assuntos
Produtos Agrícolas/parasitologia , Aquecimento Global , Insetos/crescimento & desenvolvimento , Oryza/parasitologia , Triticum/parasitologia , Zea mays/parasitologia , Animais , Metabolismo Basal , Clima , Insetos/metabolismo , População , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa