Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Mol Cell ; 81(11): 2417-2427.e5, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33838103

RESUMO

mRNA translation is coupled to multiprotein complex assembly in the cytoplasm or to protein delivery into intracellular compartments. Here, by combining systematic RNA immunoprecipitation and single-molecule RNA imaging in yeast, we have provided a complete depiction of the co-translational events involved in the biogenesis of a large multiprotein assembly, the nuclear pore complex (NPC). We report that binary interactions between NPC subunits can be established during translation, in the cytoplasm. Strikingly, the nucleoporins Nup1/Nup2, together with a number of nuclear proteins, are instead translated at nuclear pores, through a mechanism involving interactions between their nascent N-termini and nuclear transport receptors. Uncoupling this co-translational recruitment further triggers the formation of cytoplasmic foci of unassembled polypeptides. Altogether, our data reveal that distinct, spatially segregated modes of co-translational interactions foster the ordered assembly of NPC subunits and that localized translation can ensure the proper delivery of proteins to the pore and the nucleus.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/genética , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transporte Ativo do Núcleo Celular , Citoplasma/genética , Citoplasma/metabolismo , Regulação Fúngica da Expressão Gênica , Carioferinas/genética , Carioferinas/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/classificação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
PLoS Genet ; 19(8): e1010848, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37585488

RESUMO

N-terminal ends of polypeptides are critical for the selective co-translational recruitment of N-terminal modification enzymes. However, it is unknown whether specific N-terminal signatures differentially regulate protein fate according to their cellular functions. In this work, we developed an in-silico approach to detect functional preferences in cellular N-terminomes, and identified in S. cerevisiae more than 200 Gene Ontology terms with specific N-terminal signatures. In particular, we discovered that Mitochondrial Targeting Sequences (MTS) show a strong and specific over-representation at position 2 of hydrophobic residues known to define potential substrates of the N-terminal acetyltransferase NatC. We validated mitochondrial precursors as co-translational targets of NatC by selective purification of translating ribosomes, and found that their N-terminal signature is conserved in Saccharomycotina yeasts. Finally, systematic mutagenesis of the position 2 in a prototypal yeast mitochondrial protein confirmed its critical role in mitochondrial protein import. Our work highlights the hydrophobicity of MTS N-terminal residues and their targeting by NatC as important features for the definition of the mitochondrial proteome, providing a molecular explanation for mitochondrial defects observed in yeast or human NatC-depleted cells. Functional mapping of N-terminal residues thus has the potential to support the discovery of novel mechanisms of protein regulation or targeting.


Assuntos
Proteoma , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteoma/metabolismo , Transporte Proteico , Proteínas Fúngicas/metabolismo , Proteínas Mitocondriais/metabolismo
3.
Cell ; 135(2): 308-21, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18957205

RESUMO

During transcription, proteins assemble sequentially with nascent RNA to generate a messenger ribonucleoprotein particle (mRNP). The THO complex and its associated Sub2p helicase are functionally implicated in both transcription and mRNP biogenesis but their precise function remains elusive. We show here that THO/Sub2p mutation leads to the accumulation of a stalled intermediate in mRNP biogenesis that contains nuclear pore components and polyadenylation factors in association with chromatin. Microarray analyses of genomic loci that are aberrantly docked to the nuclear pore in mutants allowed the identification of approximately 400 novel validated target genes that require THO /Sub2p for efficient expression. Our data strongly suggests that the THO complex/Sub2p function is required to coordinate events leading to the acquisition of export competence at a step that follows commitment to 3'-processing.


Assuntos
Adenosina Trifosfatases/metabolismo , Poro Nuclear/metabolismo , Processamento de Terminações 3' de RNA , Transporte de RNA , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Adenosina Trifosfatases/genética , Cromatina/metabolismo , Proteínas de Choque Térmico/genética , Mutação , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Nucleossomos/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
4.
Microbiology (Reading) ; 165(10): 1041-1060, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31050635

RESUMO

Iron is an essential element to most microorganisms, yet an excess of iron is toxic. Hence, living cells have to maintain a tight balance between iron uptake and iron consumption and storage. The control of intracellular iron concentrations is particularly challenging for pathogens because mammalian organisms have evolved sophisticated high-affinity systems to sequester iron from microbes and because iron availability fluctuates among the different host niches. In this review, we present the current understanding of iron homeostasis and its regulation in the fungal pathogen Candida glabrata. This yeast is an emerging pathogen which has become the second leading cause of candidemia, a life-threatening invasive mycosis. C. glabrata is relatively poorly studied compared to the closely related model yeast Saccharomyces cerevisiae or to the pathogenic yeast Candida albicans. Still, several research groups have started to identify the actors of C. glabrata iron homeostasis and its transcriptional and post-transcriptional regulation. These studies have revealed interesting particularities of C. glabrata and have shed new light on the evolution of fungal iron homeostasis.


Assuntos
Candida glabrata/fisiologia , Regulação Fúngica da Expressão Gênica , Homeostase/genética , Ferro/metabolismo , Candida glabrata/genética , Candida glabrata/crescimento & desenvolvimento , Candida glabrata/metabolismo , Candidíase/microbiologia , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Deficiências de Ferro , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
5.
Nucleic Acids Res ; 44(18): 8826-8841, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27580715

RESUMO

The discovery of novel specific ribosome-associated factors challenges the assumption that translation relies on standardized molecular machinery. In this work, we demonstrate that Tma108, an uncharacterized translation machinery-associated factor in yeast, defines a subpopulation of cellular ribosomes specifically involved in the translation of less than 200 mRNAs encoding proteins with ATP or Zinc binding domains. Using ribonucleoparticle dissociation experiments we established that Tma108 directly interacts with the nascent protein chain. Additionally, we have shown that translation of the first 35 amino acids of Asn1, one of the Tma108 targets, is necessary and sufficient to recruit Tma108, suggesting that it is loaded early during translation. Comparative genomic analyses, molecular modeling and directed mutagenesis point to Tma108 as an original M1 metallopeptidase, which uses its putative catalytic peptide-binding pocket to bind the N-terminus of its targets. The involvement of Tma108 in co-translational regulation is attested by a drastic change in the subcellular localization of ATP2 mRNA upon Tma108 inactivation. Tma108 is a unique example of a nascent chain-associated factor with high selectivity and its study illustrates the existence of other specific translation-associated factors besides RNA binding proteins.


Assuntos
Aminopeptidases/metabolismo , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Aminopeptidases/química , Hibridização in Situ Fluorescente , Mitocôndrias/genética , Mitocôndrias/metabolismo , Elongação Traducional da Cadeia Peptídica , Ligação Proteica , ATPases Translocadoras de Prótons/genética , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Zinco/metabolismo
6.
Mol Microbiol ; 96(5): 951-72, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25732006

RESUMO

Flavohemoglobins are the main detoxifiers of nitric oxide (NO) in bacteria and fungi and are induced in response to nitrosative stress. In fungi, the flavohemoglobin encoding gene YHB1 is positively regulated by transcription factors which are activated upon NO exposure. In this study, we show that in the model yeast Saccharomyces cerevisiae and in the human pathogen Candida glabrata, the transcription factor Yap7 constitutively represses YHB1 by binding its promoter. Consequently, YAP7 deletion conferred high NO resistance to the cells. Co-immunoprecipitation experiments and mutant analyses indicated that Yap7 represses YHB1 by recruiting the transcriptional repressor Tup1. In S. cerevisiae, YHB1 repression also involves interaction of Yap7 with the Hap2/3/5 complex through a conserved Hap4-like-bZIP domain, but this interaction has been lost in C. glabrata. The evolutionary origin of this regulation was investigated by functional analyses of Yap7 and of its paralogue Yap5 in different yeast species. These analyses indicated that the negative regulation of YHB1 by Yap7 arose by neofunctionalization after the whole genome duplication which led to the C. glabrata and S. cerevisiae extant species. This work describes a new aspect of the regulation of fungal nitric oxidase and provides detailed insights into its functioning and evolution.


Assuntos
Candida glabrata/genética , Dioxigenases/genética , Duplicação Gênica , Genoma Fúngico , Hemeproteínas/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Dioxigenases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Hemeproteínas/metabolismo , Humanos , Mutação , Óxido Nítrico/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Eukaryot Cell ; 14(5): 442-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25724885

RESUMO

ATP-binding cassette transporters Pdr5 and Yor1 from Saccharomyces cerevisiae control the asymmetric distribution of phospholipids across the plasma membrane as well as serving as ATP-dependent drug efflux pumps. Mutant strains lacking these transporter proteins were found to exhibit very different resistance phenotypes to two inhibitors of sphingolipid biosynthesis that act either late (aureobasidin A [AbA]) or early (myriocin [Myr]) in the pathway leading to production of these important plasma membrane lipids. These pdr5Δ yor1 strains were highly AbA resistant but extremely sensitive to Myr. We provide evidence that these phenotypic changes are likely due to modulation of the plasma membrane flippase complexes, Dnf1/Lem3 and Dnf2/Lem3. Flippases act to move phospholipids from the outer to the inner leaflet of the plasma membrane. Genetic analyses indicate that lem3Δ mutant strains are highly AbA sensitive and Myr resistant. These phenotypes are fully epistatic to those seen in pdr5Δ yor1 strains. Direct analysis of AbA-induced signaling demonstrated that loss of Pdr5 and Yor1 inhibited the AbA-triggered phosphorylation of the AGC kinase Ypk1 and its substrate Orm1. Microarray experiments found that a pdr5Δ yor1 strain induced a Pdr1-dependent induction of the entire Pdr regulon. Our data support the view that Pdr5/Yor1 negatively regulate flippase function and activity of the nuclear Pdr1 transcription factor. Together, these data argue that the interaction of the ABC transporters Pdr5 and Yor1 with the Lem3-dependent flippases regulates permeability of AbA via control of plasma membrane protein function as seen for the high-affinity tryptophan permease Tat2.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Transativadores/metabolismo
8.
Nucleic Acids Res ; 42(8): 5043-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500206

RESUMO

Assembly of messenger ribonucleoparticles (mRNPs) is a pivotal step in gene expression, but only a few molecular mechanisms contributing to its regulation have been described. Here, through a comprehensive proteomic survey of mRNP assembly, we demonstrate that the SUMO pathway specifically controls the association of the THO complex with mRNPs. We further show that the THO complex, a key player in the interplay between gene expression, mRNA export and genetic stability, is sumoylated on its Hpr1 subunit and that this modification regulates its association with mRNPs. Altered recruitment of the THO complex onto mRNPs in sumoylation-defective mutants does not affect bulk mRNA export or genetic stability, but impairs the expression of acidic stress-induced genes and, consistently, compromises viability in acidic stress conditions. Importantly, inactivation of the nuclear exosome suppresses the phenotypes of the hpr1 non-sumoylatable mutant, showing that SUMO-dependent mRNP assembly is critical to allow a specific subset of mRNPs to escape degradation. This article thus provides the first example of a SUMO-dependent mRNP-assembly event allowing a refined tuning of gene expression, in particular under specific stress conditions.


Assuntos
Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Cisteína Endopeptidases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Expressão Gênica , Proteoma/metabolismo , Transporte de RNA , RNA Mensageiro/metabolismo , Proteína SUMO-1/metabolismo , Estresse Fisiológico/genética , Ubiquitinação
9.
Biochim Biophys Acta ; 1830(6): 3719-33, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23500070

RESUMO

BACKGROUND: Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function. METHODS: A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out. RESULTS: TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization. CONCLUSIONS: TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON. GENERAL SIGNIFICANCE: Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.


Assuntos
Proteínas de Membrana/biossíntese , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Células Ganglionares da Retina/metabolismo , Animais , Células COS , Chlorocebus aethiops , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Humanos , Proteínas de Membrana/genética , Membranas Mitocondriais/patologia , Proteínas Mitocondriais/genética , Mutação , Doenças do Nervo Óptico/genética , Doenças do Nervo Óptico/metabolismo , Doenças do Nervo Óptico/patologia , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Ganglionares da Retina/patologia
10.
Yeast ; 31(10): 375-91, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25041923

RESUMO

Peak calling is a critical step in ChIPseq data analysis. Choosing the correct algorithm as well as optimized parameters for a specific biological system is an essential task. In this article, we present an original peak-calling method (bPeaks) specifically designed to detect transcription factor (TF) binding sites in small eukaryotic genomes, such as in yeasts. As TF interactions with DNA are strong and generate high binding signals, bPeaks uses simple parameters to compare the sequences (reads) obtained from the immunoprecipitation (IP) with those from the control DNA (input). Because yeasts have small genomes (<20 Mb), our program has the advantage of using ChIPseq information at the single nucleotide level and can explore, in a reasonable computational time, results obtained with different sets of parameter values. Graphical outputs and text files are provided to rapidly assess the relevance of the detected peaks. Taking advantage of the simple promoter structure in yeasts, additional functions were implemented in bPeaks to automatically assign the peaks to promoter regions and retrieve peak coordinates on the DNA sequence for further predictions of regulatory motifs, enriched in the list of peaks. Applications of the bPeaks program to three different ChIPseq datasets from Saccharomyces cerevisiae, Candida albicans and Candida glabrata are presented. Each time, bPeaks allowed us to correctly predict the DNA binding sequence of the studied TF and provided relevant lists of peaks. The bioinformatics tool bPeaks is freely distributed to academic users. Supplementary data, together with detailed tutorials, are available online: http://bpeaks.gene-networks.net.


Assuntos
Algoritmos , Candida/genética , Biologia Computacional/métodos , Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sítios de Ligação , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
11.
BMC Genomics ; 13: 396, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22897889

RESUMO

BACKGROUND: Drug susceptible clinical isolates of Candida albicans frequently become highly tolerant to drugs during chemotherapy, with dreadful consequences to patient health. We used RNA sequencing (RNA-seq) to analyze the transcriptomes of a CDR (Candida Drug Resistance) strain and its isogenic drug sensitive counterpart. RESULTS: RNA-seq unveiled differential expression of 228 genes including a) genes previously identified as involved in CDR, b) genes not previously associated to the CDR phenotype, and c) novel transcripts whose function as a gene is uncharacterized. In particular, we show for the first time that CDR acquisition is correlated with an overexpression of the transcription factor encoding gene CZF1. CZF1 null mutants were susceptible to many drugs, independently of known multidrug resistance mechanisms. We show that CZF1 acts as a repressor of ß-glucan synthesis, thus negatively regulating cell wall integrity. Finally, our RNA-seq data allowed us to identify a new transcribed region, upstream of the TAC1 gene, which encodes the major CDR transcriptional regulator. CONCLUSION: Our results open new perspectives of the role of Czf1 and of our understanding of the transcriptional and post-transcriptional mechanisms that lead to the acquisition of drug resistance in C. albicans, with potential for future improvements of therapeutic strategies.


Assuntos
Candida albicans/genética , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta-Glucanas/metabolismo
12.
Antimicrob Agents Chemother ; 56(1): 495-506, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22006003

RESUMO

In this study, we show that a chemical dye, malachite green (MG), which is commonly used in the fish industry as an antifungal, antiparasitic, and antibacterial agent, could effectively kill Candida albicans and non-C. albicans species. We have demonstrated that Candida cells are susceptible to MG at a very low concentration (MIC that reduces growth by 50% [MIC(50)], 100 ng ml(-1)) and that the effect of MG is independent of known antifungal targets, such as ergosterol metabolism and major drug efflux pump proteins. Transcriptional profiling in response to MG treatment of C. albicans cells revealed that of a total of 207 responsive genes, 167 genes involved in oxidative stress, virulence, carbohydrate metabolism, heat shock, amino acid metabolism, etc., were upregulated, while 37 genes involved in iron acquisition, filamentous growth, mitochondrial respiration, etc., were downregulated. We confirmed experimentally that Candida cells exposed to MG resort to a fermentative mode of metabolism, perhaps due to defective respiration. In addition, we showed that MG triggers depletion of intracellular iron pools and enhances reactive oxygen species (ROS) levels. These effects could be reversed by the addition of iron or antioxidants, respectively. We provided evidence that the antifungal effect of MG is exerted through the transcription regulators UPC2 (regulating ergosterol biosynthesis and azole resistance) and STP2 (regulating amino acid permease genes). Taken together, our transcriptome, genetic, and biochemical results allowed us to decipher the multiple mechanisms by which MG exerts its anti-Candida effects, leading to a metabolic shift toward fermentation, increased generation of ROS, labile iron deprivation, and cell necrosis.


Assuntos
Candida albicans/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Corantes de Rosanilina/farmacologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/metabolismo , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Farmacorresistência Fúngica , Ergosterol/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Análise de Sequência com Séries de Oligonucleotídeos , Espécies Reativas de Oxigênio/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Transcriptoma
13.
Front Cell Infect Microbiol ; 11: 731988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900750

RESUMO

The CCAAT-binding complex (CBC) is a conserved heterotrimeric transcription factor which, in fungi, requires additional regulatory subunits to act on transcription. In the pathogenic yeast Candida glabrata, CBC has a dual role. Together with the Hap4 regulatory subunit, it activates the expression of genes involved in respiration upon growth with non-fermentable carbon sources, while its association with the Yap5 regulatory subunit is required for the activation of iron tolerance genes in response to iron excess. In the present work, we investigated further the interplay between CBC, Hap4 and Yap5. We showed that Yap5 regulation requires a specific Yap Response Element in the promoter of its target gene GRX4 and that the presence of Yap5 considerably strengthens the binding of CBC to the promoters of iron tolerance genes. Chromatin immunoprecipitation (ChIP) and transcriptome experiments showed that Hap4 can also bind these promoters but has no impact on the expression of those genes when Yap5 is present. In the absence of Yap5 however, GRX4 is constitutively regulated by Hap4, similarly to the genes involved in respiration. Our results suggest that the distinction between the two types of CBC targets in C. glabrata is mainly due to the dependency of Yap5 for very specific DNA sequences and to the competition between Hap4 and Yap5 at the promoter of the iron tolerance genes.


Assuntos
Candida glabrata , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição de Zíper de Leucina Básica/genética , Candida glabrata/genética , Regulação Fúngica da Expressão Gênica , Homeostase , Humanos , Ferro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Environ Microbiol ; 11(2): 494-504, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19196279

RESUMO

Microorganisms in nature form organized multicellular structures (colonies, biofilms) possessing properties absent in individual cells. These are often related to the better ability of communities to survive long-lasting starvation and stress and include mechanisms of adaptation and cell specialization. Thus, yeast colonies pass through distinct developmental phases characterized by changes in pH and the production of ammonia-signalling molecules. Here, we show that Saccharomyces cerevisiae colony transition between major developmental phases (first acidic, alkali, second acidic) is accompanied by striking transcription changes, while the development within each particular phase is guided mostly at the post-transcriptional level. First- and second-acidic-phase colonies markedly differ. Second-acidic-phase colonies maintain the adaptive metabolism activated in the ammonia-producing period, supplemented by additional changes, which begin after colonies enter the second acidic phase. Cells with particular properties are not homogenously dispersed throughout the colony population, but localize to specific colony regions. Thus, cells located at the colony margin are able to export higher amounts of ammonium than central cells and to activate an adaptive metabolism. In contrast, central chronologically aged cells are unable to undergo these changes but they maintain higher levels of various stress-defence enzymes. These divergent properties of both cell types determine their consequent dissimilar fate.


Assuntos
Adaptação Fisiológica , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Amônia/metabolismo , Meios de Cultura/química , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Eukaryot Cell ; 7(1): 68-77, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17993571

RESUMO

Steroids are known to induce pleiotropic drug resistance states in hemiascomycetes, with tremendous potential consequences for human fungal infections. Our analysis of gene expression in Saccharomyces cerevisiae and Candida albicans cells subjected to three different concentrations of progesterone revealed that their pleiotropic drug resistance (PDR) networks were strikingly sensitive to steroids. In S. cerevisiae, 20 of the Pdr1p/Pdr3p target genes, including PDR3 itself, were rapidly induced by progesterone, which mimics the effects of PDR1 gain-of-function alleles. This unique property allowed us to decipher the respective roles of Pdr1p and Pdr3p in PDR induction and to define functional modules among their target genes. Although the expression profiles of the major PDR transporters encoding genes ScPDR5 and CaCDR1 were similar, the S. cerevisiae global PDR response to progesterone was only partly conserved in C. albicans. In particular, the role of Tac1p, the main C. albicans PDR regulator, in the progesterone response was apparently restricted to five genes. These results suggest that the C. albicans and S. cerevisiae PDR networks, although sharing a conserved core regarding the regulation of membrane properties, have different structures and properties. Additionally, our data indicate that other as yet undiscovered regulators may second Tac1p in the C. albicans drug response.


Assuntos
Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica Múltipla/genética , Proteínas Fúngicas/metabolismo , Redes Reguladoras de Genes/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Esteroides/farmacologia , Evolução Biológica , Northern Blotting , Candida albicans/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ergosterol/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Progesterona/farmacologia , Progestinas/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Biochem J ; 414(2): 301-11, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18439143

RESUMO

In the budding yeast Saccharomyces cerevisiae, arsenic detoxification involves the activation of Yap8, a member of the Yap (yeast AP-1-like) family of transcription factors, which in turn regulates ACR2 and ACR3, genes encoding an arsenate reductase and a plasma-membrane arsenite-efflux protein respectively. In addition, Yap1 is involved in the arsenic adaptation process through regulation of the expression of the vacuolar pump encoded by YCF1 (yeast cadmium factor 1 gene) and also contributing to the regulation of ACR genes. Here we show that Yap1 is also involved in the removal of ROS (reactive oxygen species) generated by arsenic compounds. Data on lipid peroxidation and intracellular oxidation indicate that deletion of YAP1 and YAP8 triggers cellular oxidation mediated by inorganic arsenic. In spite of the increased amounts of As(III) absorbed by the yap8 mutant, the enhanced transcriptional activation of the antioxidant genes such as GSH1 (gamma- glutamylcysteine synthetase gene), SOD1 (superoxide dismutase 1 gene) and TRX2 (thioredoxin 2 gene) may prevent protein oxidation. In contrast, the yap1 mutant exhibits high contents of protein carbonyl groups and the GSSG/GSH ratio is severely disturbed on exposure to arsenic compounds in these cells. These results point to an additional level of Yap1 contribution to arsenic stress responses by preventing oxidative damage in cells exposed to these compounds. Transcriptional profiling revealed that genes of the functional categories related to sulphur and methionine metabolism and to the maintenance of cell redox homoeostasis are activated to mediate adaptation of the wild-type strain to 2 mM arsenate treatment.


Assuntos
Arsênio/farmacologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Fatores de Transcrição/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Northern Blotting , Western Blotting , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Microb Cell ; 6(6): 267-285, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31172012

RESUMO

Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in Saccharomyces cerevisiae, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.

18.
Physiol Genomics ; 33(1): 110-20, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18198280

RESUMO

We analyzed the global transcriptional response of Saccharomyces cerevisiae cells exposed to different concentrations of CsCl in the growth medium and at different times after addition. Early responsive genes were mainly involved in cell wall structure and biosynthesis. About half of the induced genes were previously shown to respond to other alkali metal cations in a Hog1-dependent fashion. Western blot analysis confirmed that cesium concentrations as low as 100 mM activate Hog1 phosphorylation. Another important fraction of the cesium-modulated genes requires Yaf9p for full responsiveness as shown by the transcriptome of a yaf9-deleted strain in the presence of cesium. We showed that a cell wall-restructuring process promptly occurs in response to cesium addition, which is dependent on the presence of both Hog1 and Yaf9 proteins. Moreover, the sensitivity to low concentration of cesium of the yaf9-deleted strain is not observed in a strain carrying the hog1/yaf9 double deletion. We conclude that the observed early transcriptional modulation of cell wall genes has a crucial role in S. cerevisiae adaptation to cesium.


Assuntos
Acetiltransferases/fisiologia , Césio/farmacologia , Cloretos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Transcrição Gênica/efeitos dos fármacos , Acetiltransferases/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Análise por Conglomerados , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases , Metais Alcalinos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Organismos Geneticamente Modificados , Concentração Osmolar , Fosforilação/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
19.
BMC Genomics ; 9: 333, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18627600

RESUMO

BACKGROUND: Stress responses provide valuable models for deciphering the transcriptional networks controlling the adaptation of the cell to its environment. We analyzed the transcriptome response of yeast to toxic concentrations of selenite. We used gene network mapping tools to identify functional pathways and transcription factors involved in this response. We then used chromatin immunoprecipitation and knock-out experiments to investigate the role of some of these regulators and the regulatory connections between them. RESULTS: Selenite rapidly activates a battery of transcriptional circuits, including iron deprivation, oxidative stress and protein degradation responses. The mRNA levels of several transcriptional regulators are themselves regulated. We demonstrate the existence of a positive transcriptional loop connecting the regulator of proteasome expression, Rpn4p, to the pleiotropic drug response factor, Pdr1p. We also provide evidence for the involvement of this regulatory module in the oxidative stress response controlled by the Yap1p transcription factor and its conservation in the pathogenic yeast C. glabrata. In addition, we show that the drug resistance regulator gene YRR1 and the iron homeostasis regulator gene AFT2 are both directly regulated by Yap1p. CONCLUSION: This work depicted a highly interconnected and complex transcriptional network involved in the adaptation of yeast genome expression to the presence of selenite in its chemical environment. It revealed the transcriptional regulation of PDR1 by Rpn4p, proposed a new role for the pleiotropic drug resistance network in stress response and demonstrated a direct regulatory connection between oxidative stress response and iron homeostasis.


Assuntos
Redes Reguladoras de Genes , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Selenito de Sódio/toxicidade , Candida glabrata/genética , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , RNA Fúngico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Fatores de Transcrição/genética
20.
Nat Commun ; 9(1): 1665, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695777

RESUMO

While the activity of multiprotein complexes is crucial for cellular metabolism, little is known about the mechanisms that collectively control the expression of their components. Here, we investigate the regulations targeting the biogenesis of the nuclear pore complex (NPC), the macromolecular assembly mediating nucleocytoplasmic exchanges. Systematic analysis of RNA-binding proteins interactomes, together with in vivo and in vitro assays, reveal that a subset of NPC mRNAs are specifically bound by Hek2, a yeast hnRNP K-like protein. Hek2-dependent translational repression and protein turnover are further shown to finely tune the levels of NPC subunits. Strikingly, mutations or physiological perturbations altering pore integrity decrease the levels of the NPC-associated SUMO protease Ulp1, and trigger the accumulation of sumoylated versions of Hek2 unable to bind NPC mRNAs. Our results support the existence of a quality control mechanism involving Ulp1 as a sensor of NPC integrity and Hek2 as a repressor of NPC biogenesis.


Assuntos
Cisteína Endopeptidases/metabolismo , Retroalimentação Fisiológica , Poro Nuclear/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Biologia Computacional , Conjuntos de Dados como Assunto , Ligação Proteica/fisiologia , RNA Mensageiro/metabolismo , Sumoilação/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa