Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(20): 6240-6246, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33476410

RESUMO

In this work, the electrocatalytic reduction of dichloromethane (CH2 Cl2 ) into hydrocarbons involving a main group element-based molecular triazole-porphyrin electrocatalyst H2PorT8 is reported. This catalyst converted CH2 Cl2 in acetonitrile to various hydrocarbons (methane, ethane, and ethylene) with a Faradaic efficiency of 70 % and current density of -13 mA cm-2 at a potential of -2.2 V vs. Fc/Fc+ using water as a proton source. The findings of this study and its mechanistic interpretations demonstrated that H2PorT8 was an efficient and stable catalyst for the hydrodechlorination of CH2 Cl2 and that main group catalysts could be potentially used for exploring new catalytic reaction mechanisms.

2.
Inorg Chem ; 60(6): 3843-3850, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33629857

RESUMO

Electrochemical carbon dioxide (CO2) reduction is a sustainable approach for transforming atmospheric CO2 into chemical feedstocks and fuels. To overcome the kinetic barriers of electrocatalytic CO2 reduction, catalysts with high selectivity, activity, and stability are needed. Here, we report an iron porphyrin complex, FePEGP, with a poly(ethylene glycol) unit in the second coordination sphere, as a highly selective and active electrocatalyst for the electrochemical reduction of CO2 to carbon monoxide (CO). Controlled-potential electrolysis using FePEGP showed a Faradaic efficiency of 98% and a current density of -7.8 mA/cm2 at -2.2 V versus Fc/Fc+ in acetonitrile using water as the proton source. The maximum turnover frequency was calculated to be 1.4 × 105 s-1 using foot-of-the-wave analysis. Distinct from most other catalysts, the kinetic isotope effect (KIE) study revealed that the protonation step of the Fe-CO2 adduct is not involved in the rate-limiting step. This model shows that the PEG unit as the secondary coordination sphere enhances the catalytic kinetics and thus is an effective design for electrocatalytic CO2 reduction.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa