Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38854099

RESUMO

Medial prefrontal cortex (mPFC) and hippocampus are critical for memory retrieval, decision making and emotional regulation. While ventral CA1 (vCA1) shows direct and reciprocal connections with mPFC, dorsal CA1 (dCA1) forms indirect pathways to mPFC, notably via the thalamic Reuniens nucleus (Re). Neuroanatomical tracing has documented structural connectivity of this indirect pathway through Re however, its functional operation is largely unexplored. Here we used in vivo and in vitro electrophysiology along with optogenetics to address this question. Whole-cell patch-clamp recordings in acute mouse brain slices revealed both monosynaptic excitatory responses and disynaptic feedforward inhibition for both Re-mPFC and Re-dCA1 pathways. However, we also identified a novel biphasic excitation of mPFC by Re, but not dCA1. These early monosynaptic and late recurrent components are in marked contrast to the primarily feedforward inhibition characteristic of thalamic inputs to neocortex. Local field potential recordings in mPFC brain slices revealed that this biphasic excitation propagates throughout all cortical lamina, with the late excitation specifically enhanced by GABAAR blockade. In vivo Neuropixels recordings in head-fixed awake mice revealed a similar biphasic excitation of mPFC units by Re activation. In summary, Re output produces recurrent feed-forward excitation within mPFC suggesting a potent amplification system in the Re-mPFC network. This may facilitate amplification of dCA1->mPFC signals for which Re acts as the primary conduit, as there is little direct connectivity. In addition, the capacity of mPFC neurons to fire bursts of action potentials in response to Re input suggests that these synapses have a high gain. Significance statement: The interactions between medial prefrontal cortex and hippocampus are crucial for memory formation and retrieval. Yet, it is still poorly understood how the functional connectivity of direct and indirect pathways underlies these functions. This research explores the synaptic connectivity of the indirect pathway through the Reuniens nucleus of the thalamus using electrophysiological recordings and optogenetic manipulations. The study found that Reuniens stimulation recruits recurrent and long-lasting activity in mPFC - a phenomenon not previously recorded. This recurrent activity might create a temporal window ideal for coincidence detection and be an underlying mechanism for memory formation and retrieval.

2.
bioRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39149241

RESUMO

Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here we investigated synaptic cell adhesion molecules as novel cell type markers in the ENS. Our work identifies two Type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu , Dogiel type II morphology and AH-type electrophysiology and I H current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current I H disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons, and demonstrate a functional and critical role for sensory neurons in the generation of CMCs. One-Sentence Summary: Intrinsic sensory neurons of the enteric nervous system in the mouse distal colon exclusively express synaptic cell adhesion molecules Cdh6 and Cdh8, evoke retrograde colonic motor complexes (CMCs) when stimulated, and possess rhythmicity-associated I H current, which is necessary for the production of spontaneous CMCs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa