Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(34): 11964-11972, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28767232

RESUMO

We report the development of a new technology for monitoring multidimensional protein-protein interactions (PPIs) inside live mammalian cells using split RNA polymerase (RNAP) tags. In this new system, a protein-of-interest is tagged with an N-terminal split RNAP (RNAPN), and multiple potential binding partners are each fused to orthogonal C-terminal RNAPs (RNAPC). Assembly of RNAPN with each RNAPC is highly dependent on interactions between the tagged proteins. Each PPI-mediated RNAPN-RNAPC assembly transcribes from a separate promoter on a supplied DNA substrate, thereby generating a unique RNA output signal for each PPI. We develop and validate this new approach in the context of the Bcl-2 family of proteins. These key regulators of apoptosis are important cancer mediators, but are challenging to therapeutically target due to imperfect selectivity that leads to either off-target toxicity or tumor resistance. We demonstrate binary (1 × 1) and ternary (1 × 2) Bcl-2 PPI analyses by imaging fluorescent protein translation from mRNA outputs. Next, we perform a 1 × 4 PPI network analysis by direct measurement of four unique RNA signals via RT-qPCR. Finally, we use these new tools to monitor pharmacological engagement of Bcl-2 protein inhibitors, and uncover inhibitor-dependent competitive PPIs. The split RNAP tags improve upon other protein fragment complementation (PFC) approaches by offering both multidimensionality and sensitive detection using nucleic acid amplification and analysis techniques. Furthermore, this technology opens new opportunities for synthetic biology applications due to the versatility of RNA outputs for cellular engineering applications.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Técnicas Biossensoriais/métodos , Células HEK293 , Humanos , Modelos Moleculares , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
2.
J Med Chem ; 66(14): 9278-9296, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37437222

RESUMO

The intracellular interactions of biomolecules can be maneuvered to redirect signaling, reprogram the cell cycle, or decrease infectivity using only a few dozen atoms. Such "molecular glues," which can drive both novel and known interactions between protein partners, represent an enticing therapeutic strategy. Here, we review the methods and approaches that have led to the identification of small-molecule molecular glues. We first classify current FDA-approved molecular glues to facilitate the selection of discovery methods. We then survey two broad discovery method strategies, where we highlight the importance of factors such as experimental conditions, software packages, and genetic tools for success. We hope that this curation of methodologies for directed discovery will inspire diverse research efforts targeting a multitude of human diseases.


Assuntos
Proteínas , Humanos
3.
ACS Synth Biol ; 10(8): 2096-2110, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34319091

RESUMO

Molecules that induce interactions between proteins, often referred to as "molecular glues", are increasingly recognized as important therapeutic modalities and as entry points for rewiring cellular signaling networks. Here, we report a new PACE-based method to rapidly select and evolve molecules that mediate interactions between otherwise noninteracting proteins: rapid evolution of protein-protein interaction glues (rePPI-G). By leveraging proximity-dependent split RNA polymerase-based biosensors, we developed E. coli-based detection and selection systems that drive gene expression outputs only when interactions between target proteins are induced. We then validated the system using engineered bivalent molecular glues, showing that rePPI-G robustly selects for molecules that induce the target interaction. Proof-of-concept evolutions demonstrated that rePPI-G reduces the "hook effect" of the engineered molecular glues, due at least in part to tuning the interaction affinities of each individual component of the bifunctional molecule. Altogether, this work validates rePPI-G as a continuous, phage-based evolutionary technology for optimizing molecular glues, providing a strategy for developing molecules that reprogram protein-protein interactions.


Assuntos
Técnicas Biossensoriais , RNA Polimerases Dirigidas por DNA , Proteínas de Escherichia coli , Escherichia coli , Mapeamento de Interação de Proteínas , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
4.
Methods Enzymol ; 641: 413-432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32713533

RESUMO

Protein-protein interactions (PPIs) are involved in nearly all cellular processes. PPIs are particularly crucial for mediating selectivity along signaling pathways. Thus, measuring the competitive interplay between PPIs in a cell is important for both understanding fundamental cellular regulation and developing therapeutics targeting those whose dysregulation is associated with disease. A variety of split protein reporter-based tools are available to measure if two proteins interact within a cell and thereby characterize the general determinants of their interactions. PPIs, however, occur within complex networks facilitated by dynamic biophysical nuances that determine activity and selectivity. Evolved, proximity-dependent split T7 RNA polymerase (RNAP) biosensors have recently been used to perform deep mutational scanning of PPI interfaces, and to create synthetic gene circuits. In this chapter, we present the application of proximity-dependent split RNAP biosensors as a method to measure multidimensional PPIs in live cells. Orthogonal split RNAP "tags" encode each interaction in a unique RNA signal, thereby enabling the study of multiple competitive PPIs in live cells. Each unique RNA signal can be quantified via established RNA analysis methods. Herein, we provide advice and protocols to aid other researchers in using the split RNAP biosensor, focusing primarily on how to detect multiple PPIs in mammalian cells, including their dynamic interplay in the presence of small molecule inhibitors.


Assuntos
Técnicas Biossensoriais , RNA Polimerases Dirigidas por DNA , Animais , Bacteriófago T7 , RNA Polimerases Dirigidas por DNA/genética , Mutação , Proteínas Virais/genética
5.
Chem Sci ; 7(7): 4698-4705, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155118

RESUMO

Transition metal dichalcogenides (TMDCs) such as MoS2 comprise an important class of 2D semiconductors with numerous interesting electronic and mechanical features. Full utilization of TMDCs in materials and devices, however, necessitates robust functionalization methods. We report well-defined tetrathiafulvalene (TTF)-based polymers, exploiting synthetic routes that overcome challenges previously associated with these systems. These platforms enable basal plane coordinative interactions with MoS2, conceptually in parallel with pyrene-containing platforms for graphene and carbon nanotube modification. Not yet reported for TMDCs, these non-covalent interactions are universal and effective for MoS2 irrespective of the lattice structure, affording significantly enhanced solution stabilization of the nanosheets. Additionally, the TTF-functionalized polymers offer electronic structure modulation of MoS2 by ground state charge transfer and work function reduction, demonstrated using Kelvin probe force microscopy (KPFM). Notably, coordination and electronic effects are amplified for the TTF-polymers over TTF itself. Experiments are supported by first-principles density functional theory (DFT) calculations that probe polymer-TTF surface interactions with MoS2 and the resultant impact on electronic properties.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa