Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Radiol ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794249

RESUMO

OBJECTIVES: To assess the quality of simplified radiology reports generated with the large language model (LLM) ChatGPT and to discuss challenges and chances of ChatGPT-like LLMs for medical text simplification. METHODS: In this exploratory case study, a radiologist created three fictitious radiology reports which we simplified by prompting ChatGPT with "Explain this medical report to a child using simple language." In a questionnaire, we tasked 15 radiologists to rate the quality of the simplified radiology reports with respect to their factual correctness, completeness, and potential harm for patients. We used Likert scale analysis and inductive free-text categorization to assess the quality of the simplified reports. RESULTS: Most radiologists agreed that the simplified reports were factually correct, complete, and not potentially harmful to the patient. Nevertheless, instances of incorrect statements, missed relevant medical information, and potentially harmful passages were reported. CONCLUSION: While we see a need for further adaption to the medical field, the initial insights of this study indicate a tremendous potential in using LLMs like ChatGPT to improve patient-centered care in radiology and other medical domains. CLINICAL RELEVANCE STATEMENT: Patients have started to use ChatGPT to simplify and explain their medical reports, which is expected to affect patient-doctor interaction. This phenomenon raises several opportunities and challenges for clinical routine. KEY POINTS: • Patients have started to use ChatGPT to simplify their medical reports, but their quality was unknown. • In a questionnaire, most participating radiologists overall asserted good quality to radiology reports simplified with ChatGPT. However, they also highlighted a notable presence of errors, potentially leading patients to draw harmful conclusions. • Large language models such as ChatGPT have vast potential to enhance patient-centered care in radiology and other medical domains. To realize this potential while minimizing harm, they need supervision by medical experts and adaption to the medical field.

2.
Med Image Anal ; 84: 102699, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463832

RESUMO

The density of mitotic figures (MF) within tumor tissue is known to be highly correlated with tumor proliferation and thus is an important marker in tumor grading. Recognition of MF by pathologists is subject to a strong inter-rater bias, limiting its prognostic value. State-of-the-art deep learning methods can support experts but have been observed to strongly deteriorate when applied in a different clinical environment. The variability caused by using different whole slide scanners has been identified as one decisive component in the underlying domain shift. The goal of the MICCAI MIDOG 2021 challenge was the creation of scanner-agnostic MF detection algorithms. The challenge used a training set of 200 cases, split across four scanning systems. As test set, an additional 100 cases split across four scanning systems, including two previously unseen scanners, were provided. In this paper, we evaluate and compare the approaches that were submitted to the challenge and identify methodological factors contributing to better performance. The winning algorithm yielded an F1 score of 0.748 (CI95: 0.704-0.781), exceeding the performance of six experts on the same task.


Assuntos
Algoritmos , Mitose , Humanos , Gradação de Tumores , Prognóstico
3.
J Med Imaging (Bellingham) ; 9(2): 027501, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35300344

RESUMO

Purpose: Automatic outlining of different tissue types in digitized histological specimen provides a basis for follow-up analyses and can potentially guide subsequent medical decisions. The immense size of whole-slide-images (WSIs), however, poses a challenge in terms of computation time. In this regard, the analysis of nonoverlapping patches outperforms pixelwise segmentation approaches but still leaves room for optimization. Furthermore, the division into patches, regardless of the biological structures they contain, is a drawback due to the loss of local dependencies. Approach: We propose to subdivide the WSI into coherent regions prior to classification by grouping visually similar adjacent pixels into superpixels. Afterward, only a random subset of patches per superpixel is classified and patch labels are combined into a superpixel label. We propose a metric for identifying superpixels with an uncertain classification and evaluate two medical applications, namely tumor area and invasive margin estimation and tumor composition analysis. Results: The algorithm has been developed on 159 hand-annotated WSIs of colon resections and its performance is compared with an analysis without prior segmentation. The algorithm shows an average speed-up of 41% and an increase in accuracy from 93.8% to 95.7%. By assigning a rejection label to uncertain superpixels, we further increase the accuracy by 0.4%. While tumor area estimation shows high concordance to the annotated area, the analysis of tumor composition highlights limitations of our approach. Conclusion: By combining superpixel segmentation and patch classification, we designed a fast and accurate framework for whole-slide cartography that is AI-model agnostic and provides the basis for various medical endpoints.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa