Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202409010, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012678

RESUMO

Site-selective C-H bond functionalization of arenes at the para position remains extremely challenging primarily due to its relative inaccessibility from the catalytic site. As a consequence, it is significantly restricted to the limited molecular scaffolds. Herein, we report a method for the para-C-H borylation of aromatic aldimines and benzylamines using commercially available ligands under iridium catalysis. The established method displayed excellent para-selectivity for variously substituted aromatic aldimines, benzylamines and bioactive molecules. Based on the several control experiments, it has been realized that a Lewis acid-base interaction between the nitrogen and boron functionality guides the para selectivity via a steric shield for the aromatic aldimines, where Bpin acts as a transient directing group. However, the steric shield of the in situ generated N-Bpin moiety controlled the overall selectivity for the para borylation of benzylamines.

2.
Angew Chem Int Ed Engl ; 61(27): e202203539, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35441762

RESUMO

A method of para-selective borylation of aromatic amides is described. The borylation proceeded via an unprecedented substrate-ligand distortion between the twisted aromatic amides and a newly designed ligand framework (defa) that is different from the traditionally used ligand (dtbpy) for the C-H borylation reactions. The designed ligand framework (defa) has led to the development of a new type of catalytic system that shows excellent para selectivity for a range of aromatic amides. Moreover, the designed ligand has shown excellent reactivity and selectivity for a range of heterocyclic aromatic amides. The identification of key transition states and intermediates using the DFT computations associated with the three regio-isomeric pathways revealed that the most efficient catalytic pathway with the defa ligand leads to the para borylation while in the case of bpy the borylation at the para and meta sites compete.

3.
J Environ Manage ; 211: 356-366, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29427928

RESUMO

Heavy metal ion removal from consumable water is an indispensable need to maintain healthy life. Therefore cost effective and highly efficient sorbents are strongly needed to pose threat to real water pollution. Nanomaterials are widely used to maintain clean aqueous system in a very cost effective way with high removal efficiency. In this present work, pure coral like Ni2O3 nanostructures were prescribed for Cr(VI) remediation which were prepared by two step synthesis procedure at room temperature. The single hierarchical morphology as confirmed from HRTEM (size∼200 nm) were subjected to toxic Cr(VI) ion removal experiments. They were found to remove ∼65% Cr(VI) ions that was higher than that of pure Ni2O3 nanoparticles of comparable size. The enhanced properties were explained on the basis of the defect states present within the nanostructure, investigated by positron annihilation lifetime spectroscopy (PALS). It was found that the hierarchical nanostructure had more number of di-vacancies and vacancy-clusters as compared to the particles. On performing isotherm fitting, it was found that the coral like morphology had a high heterogeneity factor that aided to a high adsorption rate when compared to the pure Ni2O3 nanoparticles (which had a homogenous surface). The synthesized nanostructure was severely toxic to bacterial community having minimum inhibitory concentration (MIC) of ∼300 µg/L. Also the nanostructure exhibited dual functionality towards Cr(VI) and bacteria contaminated water at 200 µg/ml. The maximum Cr(VI) removal efficiency for this dual system is found to be 39% whereas antibacterial activity was turned out to be 30% which was extensively higher than that of toxic Cr(VI) ions. A plausible mechanism for the dual functionality was also predicted.


Assuntos
Cromo/química , Níquel/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Óxidos , Água
4.
Sci Adv ; 9(16): eadg3311, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083526

RESUMO

Transition metal-catalyzed C─H bond activation and borylation is a powerful synthetic method that offers versatile synthetic transformation from organoboron compounds to virtually all other functional groups. Compared to the ortho-borylation, remote borylation remains more challenging owing to the inaccessibility of these C─H bonds. Enforcing the metal catalyst toward the remote C─H bonds needs well-judged catalyst design through proper ligand development. This review article aims to summarize the recent discoveries for the remote C─H borylation by the employment of new catalyst/ligand design with the help of steric of the ligand, noncovalent interactions. It has been found that C─H borylation now takes part in the total synthesis of natural products in a shorter route. Whereas, Ir-catalyzed C─H borylation is predominant, cobalt catalyst has also started to affect this field for sustainable and cost-effective development.

5.
Nat Commun ; 14(1): 6906, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903772

RESUMO

Remote meta selective C-H functionalization of aromatic compounds remains a challenging problem in chemical synthesis. Here, we report an iridium catalyst bearing a bidentate pyridine-pyridone (PY-PYRI) ligand framework that efficiently catalyzes this meta selective borylation reaction. We demonstrate that the developed concept can be employed to introduce a boron functionality at the remote meta position of phenols, phenol containing bioactive and drug molecules, which was an extraordinary challenge. Moreover, we have demonstrated that the method can also be applied for the remote C6 borylation of indole derivatives including tryptophan that was the key synthetic precursor for the total synthesis of Verruculogen and Fumitremorgin A alkaloids. The inspiration of this catalytic concept was started from the O-Si secondary interaction, which by means of several more detailed control experiments and detailed computational investigations revealed that an unprecedented Bpin shift occurs during the transformation of iridium bis(boryl) complex to iridium tris(boryl) complex, which eventually control the remote meta selectivity by means of the dispersion between the designed ligand and steering silane group.

6.
ACS Appl Bio Mater ; 5(8): 3850-3858, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35926152

RESUMO

Diagnosing heavy metals poisoning in human beings is of paramount importance. In this work, we present the design of a biocompatible FexNi(1-x)O hierarchical nanostructure-based sensor for ultraselective detection of arsenate (As(V)) ions in biological environments (e.g., body fluids, blood plasma, etc.). A novel iron doping technique was employed to fabricate the nanostructures rich with Fe cores to induce ultraselectivity toward arsenates. These nanostructures were used as dispersed markers and thin films deposited on Si/SiO2 substrates to support in vivo and in vitro detection of As(V) ions. The device demonstrated excellent sensitivity with a maximum response of 64.7% (for 1000 ppm As(V) ions) with a limit of detection of 1 ppb in blood plasma. The sensor's response time (τr) was 5 s with 95.48% recovery with a maximum error of ±0.549% after three washes. The device showed excellent response stability for 63 days with a maximum error of ±1.27%. The sensor devices were highly reproducible, with a maximum variation of ±0.6% in response for a batch of four devices. Due to Fe doping, the nanostructures in suspension demonstrated as arsenate markers with excellent cytocompatibility (with dosage up to 1 mg/mL) for human umbilical vein endothelial cells and 3T3 fibroblasts (LDH < 120 and cell viability ∼80%) till 48 h of incubation. The sensing mechanism suggested that the nanostructures not only detect arsenates but also prevent their substantial reduction to arsenites under anoxic environments. Thus, the sensors may show considerable progress toward early arsenate detection in living systems.


Assuntos
Arseniatos , Intoxicação por Arsênico , Arseniatos/toxicidade , Intoxicação por Arsênico/diagnóstico , Células Endoteliais , Humanos , Íons , Prognóstico , Dióxido de Silício
7.
Artigo em Inglês | MEDLINE | ID: mdl-35002013

RESUMO

sUAS (small-Unmanned Aircraft System) and advanced surface energy balance models allow detailed assessment and monitoring (at plant scale) of different (agricultural, urban, and natural) environments. Significant progress has been made in the understanding and modeling of atmosphere-plant-soil interactions and numerical quantification of the internal processes at plant scale. Similarly, progress has been made in ground truth information comparison and validation models. An example of this progress is the application of sUAS information using the Two-Source Surface Energy Balance (TSEB) model in commercial vineyards by the Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment - GRAPEX Project in California. With advances in frequent sUAS data collection for larger areas, sUAS information processing becomes computationally expensive on local computers. Additionally, fragmentation of different models and tools necessary to process the data and validate the results is a limiting factor. For example, in the referred GRAPEX project, commercial software (ArcGIS and MS Excel) and Python and Matlab code are needed to complete the analysis. There is a need to assess and integrate research conducted with sUAS and surface energy balance models in a sharing platform to be easily migrated to high performance computing (HPC) resources. This research, sponsored by the National Science Foundation FAIR Cyber Training Fellowships, is integrating disparate software and code under a unified language (Python). The Python code for estimating the surface energy fluxes using TSEB2T model as well as the EC footprint analysis code for ground truth information comparison were hosted in myGeoHub site https://mygeohub.org/ to be reproducible and replicable.

8.
Microsyst Nanoeng ; 6: 35, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34567649

RESUMO

Metal oxide resistive gas sensors suffer from poor selectivity that restricts their practical applicability. Conventional sensor arrays are used to improve selectivity which increased the system complexity. Here, we have proposed a novel NiO/ZnO-based p-n junction single-diode device for selective sensing of several volatile organic compounds (VOCs) simultaneously by tuning bias voltage. The operating voltage was varied between 3 and 5 volts to achieve selective sensing of 2-propanol (19.1 times for 95 ppm with response and recovery times of 70 s and 55 s respectively' at 3 volts), toluene (20.1 times for 95 ppm with response and recovery times of 100 s and 60 s respectively, at 4 volts), and formaldehyde (11.2 times for 95 ppm with response and recovery times of 88 s and 54 s respectively, at 5 volts). A probable mechanism of the tunable selectivity with operating bias voltage due to increase in surface carriers with increasing voltage was hence put forth. Thus, this device may play an important role to develop future selective multiple VOC sensor thereby replacing standard sensor arrays.

9.
ACS Omega ; 3(5): 5029-5037, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458716

RESUMO

Tuning sensing capabilities of simple to complex oxides for achieving enhanced sensitivity and selectivity toward the detection of toxic volatile organic compounds (VOCs) is extremely important and remains a challenge. In the present work, we report the synthesis of pristine and Ce-doped CuO hollow nanostructures, which have much higher VOC sensing and response characteristics than their solid analogues. Undoped CuO hollow nanostructures exhibit high response for sensing of acetone as compared to commercial CuO nanoparticles. As a result of doping with cerium, the material starts showing selectivity. CuO hollow structures doped with 5 at. % of Ce return highest response toward methanol sensing, whereas increasing the Ce doping concentration to 10%, the material shows high response for both-acetone and methanol. The observed tunability in selectivity is directly linked to the varying concentration of the oxygen defects on the surface of the nanostructures. The work also shows that the use of hollow nanostructures could be the way forward for obtaining high-performance sensors even by using conventional and simple metal or semiconductor oxides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa