Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(14): e2213207120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976763

RESUMO

Cellular senescence, a hallmark of aging, has been implicated in the pathogenesis of many major age-related disorders, including neurodegeneration, atherosclerosis, and metabolic disease. Therefore, investigating novel methods to reduce or delay the accumulation of senescent cells during aging may attenuate age-related pathologies. microRNA-449a-5p (miR-449a) is a small, noncoding RNA down-regulated with age in normal mice but maintained in long-living growth hormone (GH)-deficient Ames Dwarf (df/df) mice. We found increased fibroadipogenic precursor cells, adipose-derived stem cells, and miR-449a levels in visceral adipose tissue of long-living df/df mice. Gene target analysis and our functional study with miR-449a-5p have revealed its potential as a serotherapeutic. Here, we test the hypothesis that miR-449a reduces cellular senescence by targeting senescence-associated genes induced in response to strong mitogenic signals and other damaging stimuli. We demonstrated that GH downregulates miR-449a expression and accelerates senescence while miR-449a upregulation using mimetics reduces senescence, primarily through targeted reduction of p16Ink4a, p21Cip1, and the PI3K-mTOR signaling pathway. Our results demonstrate that miR-449a is important in modulating key signaling pathways that control cellular senescence and the progression of age-related pathologies.


Assuntos
MicroRNAs , Animais , Camundongos , Senescência Celular/genética , Hormônio do Crescimento/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
2.
Mol Cell ; 53(1): 63-74, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24289924

RESUMO

While p53 activation has long been studied, the mechanisms by which its targets genes are restored to their preactivation state are less clear. We report here that TAF1 phosphorylates p53 at Thr55, leading to dissociation of p53 from the p21 promoter and inactivation of transcription late in the DNA damage response. We further show that cellular ATP level might act as a molecular switch for Thr55 phosphorylation on the p21 promoter, indicating that TAF1 is a cellular ATP sensor. Upon DNA damage, cells undergo PARP-1-dependent ATP depletion, which is correlated with reduced TAF1 kinase activity and Thr55 phosphorylation, resulting in p21 activation. As cellular ATP levels recover, TAF1 is able to phosphorylate p53 on Thr55, which leads to dissociation of p53 from the p21 promoter. ChIP-sequencing analysis reveals p53 dissociates from promoters genome wide as cells recover from DNA damage, suggesting the general nature of this mechanism.


Assuntos
Dano ao DNA , Histona Acetiltransferases/metabolismo , Regiões Promotoras Genéticas , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Estudo de Associação Genômica Ampla , Histona Acetiltransferases/genética , Humanos , Fosforilação/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Proteína Supressora de Tumor p53/genética
3.
Biogerontology ; 19(2): 171-184, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29335816

RESUMO

"Organ reserve" refers to the ability of an organ to successfully return to its original physiological state following repeated episodes of stress. Clinical evidence shows that organ reserve correlates with the ability of older adults to cope with an added workload or stress, suggesting a role in the process of aging. Although organ reserve is well documented clinically, it is not clearly defined at the molecular level. Interestingly, several metabolic pathways exhibit excess metabolic capacities (e.g., bioenergetics pathway, antioxidants system, plasticity). These pathways comprise molecular components that have an excess of quantity and/or activity than that required for basic physiological demand in vivo (e.g., mitochondrial complex IV or glycolytic enzymes). We propose that the excess in mtDNA copy number and tandem DNA repeats of telomeres are additional examples of intrinsically embedded structural components that could comprise excess capacity. These excess capacities may grant intermediary metabolism the ability to instantly cope with, or manage, added workload or stress. Therefore, excess metabolic capacities could be viewed as an innate mechanism of adaptability that substantiates organ reserve and contributes to the cellular defense systems. If metabolic excess capacities or organ reserves are impaired or exhausted, the ability of the cell to cope with stress is reduced. Under these circumstances cell senescence, transformation, or death occurs. In this review, we discuss excess metabolic and structural capacities as integrated metabolic pathways in relation to organ reserve and cellular aging.


Assuntos
Envelhecimento/fisiologia , Adaptação Fisiológica , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético , Glicólise , Humanos , Modelos Biológicos , Neurônios/metabolismo , Via de Pentose Fosfato , Telômero/genética , Sobrevivência de Tecidos/fisiologia
4.
Genome Res ; 24(5): 821-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24558263

RESUMO

Cytosine methylation in the genome of Drosophila melanogaster has been elusive and controversial: Its location and function have not been established. We have used a novel and highly sensitive genomewide cytosine methylation assay to detect and map genome methylation in stage 5 Drosophila embryos. The methylation we observe with this method is highly localized and strand asymmetrical, limited to regions covering ∼1% of the genome, dynamic in early embryogenesis, and concentrated in specific 5-base sequence motifs that are CA- and CT-rich but depleted of guanine. Gene body methylation is associated with lower expression, and many genes containing methylated regions have developmental or transcriptional functions. The only known DNA methyltransferase in Drosophila is the DNMT2 homolog MT2, but lines deficient for MT2 retain genomic methylation, implying the presence of a novel methyltransferase. The association of methylation with a lower expression of specific developmental genes at stage 5 raises the possibility that it participates in controlling gene expression during the maternal-zygotic transition.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genoma de Inseto , Motivos de Nucleotídeos , Animais , Composição de Bases , Ilhas de CpG , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
5.
BMC Genomics ; 16: 462, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26076733

RESUMO

BACKGROUND: Piwi-interacting RNAs (piRNAs) are a class of small RNAs; distinct types of piRNAs are expressed in the mammalian testis at different stages of development. The function of piRNAs expressed in the adult testis is not well established. We conducted a detailed characterization of piRNAs aligning at or near the 3' UTRs of protein-coding genes in a deep dataset of small RNAs from adult mouse testis. RESULTS: We identified 2710 piRNA clusters associated with 3' UTRs, including 1600 that overlapped genes not previously associated with piRNAs. 35% of the clusters extend beyond the annotated transcript; we find that these clusters correspond to, and are likely derived from, novel polyadenylated mRNA isoforms that contain previously unannotated extended 3'UTRs. Extended 3' UTRs, and small RNAs derived from them, are also present in somatic tissues; a subset of these somatic 3'UTR small RNA clusters are absent in mice lacking MIWI2, indicating a role for MIWI2 in the metabolism of somatic small RNAs. CONCLUSIONS: The finding that piRNAs are processed from extended 3' UTRs suggests a role for piRNAs in the remodeling of 3' UTRs. The presence of both clusters and extended 3'UTRs in somatic cells, with evidence for involvement of MIWI2, indicates that this pathway is more broadly distributed than currently appreciated.


Assuntos
Regiões 3' não Traduzidas/genética , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/genética , Masculino , Camundongos , RNA Mensageiro/genética , Testículo/metabolismo
6.
Genome Res ; 21(12): 2049-57, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21908772

RESUMO

We have determined methylation state differences in the epigenomes of uncultured cells purified from human, chimpanzee, and orangutan, using digestion with a methylation-sensitive enzyme, deep sequencing, and computational analysis of the sequence data. The methylomes show a high degree of conservation, but the methylation states of ~10% of CpG island-like regions differ significantly between human and chimp. The differences are not associated with changes in CG content and recapitulate the known phylogenetic relationship of the three species, indicating that they are stably maintained within each species. Inferences about the relationship between somatic and germline methylation states can be made by an analysis of CG decay, derived from methylation and sequence data. This indicates that somatic methylation states are highly related to germline states and that the methylation differences between human and chimp have occurred in the germline. These results provide evidence for epigenetic changes that occur in the germline and distinguish closely related species and suggest that germline epigenetic states might constrain somatic states.


Assuntos
Ilhas de CpG/fisiologia , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Pan troglodytes/genética , Filogenia , Adulto , Animais , Humanos , Masculino , Pan troglodytes/metabolismo , Análise de Sequência de DNA/métodos
7.
Geroscience ; 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39405012

RESUMO

Our study investigates gene expression in adipose tissue of Ames dwarf (df/df) mice, whose deficiency in growth hormone is linked to health and extended lifespan. Recognizing adipose tissue influence on metabolism, aging, and related diseases, we aim to understand its contribution to the health and longevity of df/df mice. We have identified gene and transcript expression patterns associated with critical biological functions, including metabolism, stress response, and resistance to cancer. Intriguingly, we identified genes that, despite maintaining unchanged expression levels, switch between different isoforms, impacting essential cellular functions such as tumor suppression, oncogenic activity, ATP transport, and lipid biosynthesis and storage. The isoform switching is associated with changes in protein domains, retention of introns, initiation of nonsense-mediated decay, and emergence of intrinsically disordered regions. Moreover, we detected various alternative splicing events that may drive these structural alterations. We also found changes in the expression of long non-coding RNAs (lncRNAs) that may be involved in the aging process and disease resistance by regulating crucial genes in survival and metabolism. Through weighted gene co-expression network analysis, we have linked four lncRNAs with 29 genes, which contribute to protein complexes such as the Mili-Tdrd1-Tdrd12 complex. Beyond safeguarding DNA integrity, this complex also has a wider impact on gene regulation, chromatin structure, and metabolic control. Our detailed investigation provides insight into the molecular foundations of the remarkable health and longevity of df/df mice, emphasizing the significance of adipose tissue in aging and identifying new avenues for health-promoting therapeutic strategies.

8.
Aging Cell ; 23(8): e14191, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38751007

RESUMO

Nonagenarians and centenarians serve as successful examples of aging and extended longevity, showcasing robust regulation of biological mechanisms and homeostasis. Given that human longevity is a complex field of study that navigates molecular and biological mechanisms influencing aging, we hypothesized that microRNAs, a class of small noncoding RNAs implicated in regulating gene expression at the post-transcriptional level, are differentially regulated in the circulatory system of young, middle-aged, and nonagenarian individuals. We sequenced circulating microRNAs in Okinawan males and females <40, 50-80, and >90 years of age accounting for FOXO3 genetic variations of single nucleotide polymorphism (SNP) rs2802292 (TT - common vs. GT - longevity) and validated the findings through RT-qPCR. We report five microRNAs exclusively upregulated in both male and female nonagenarians with the longevity genotype, play predictive functional roles in TGF-ß, FoxO, AMPK, Pi3K-Akt, and MAPK signaling pathways. Our findings suggest that these microRNAs upregulated in nonagenarians may provide novel insight into enhanced lifespan and health span. This discovery warrants further exploration into their roles in human aging and longevity.


Assuntos
Longevidade , Humanos , Longevidade/genética , Masculino , Feminino , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Adulto , MicroRNA Circulante/genética , MicroRNA Circulante/sangue , Japão , Idoso , Polimorfismo de Nucleotídeo Único/genética , MicroRNAs/genética , MicroRNAs/sangue , Envelhecimento/genética , Envelhecimento/sangue
9.
Physiol Genomics ; 45(21): 990-8, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24022222

RESUMO

Small noncoding RNAs carry out a variety of functions in eukaryotic cells, and in multiple species they can travel between cells, thus serving as signaling molecules. In mammals multiple small RNAs have been found to circulate in the blood, although in most cases the targets of these RNAs, and even their functions, are not well understood. YRNAs are small (84-112 nt) RNAs with poorly characterized functions, best known because they make up part of the Ro ribonucleoprotein autoantigens in connective tissue diseases. In surveying small RNAs present in the serum of healthy adult humans, we have found YRNA fragments of lengths 27 nt and 30-33 nt, derived from the 5'-ends of specific YRNAs and generated by cleavage within a predicted internal loop. Many of the YRNAs from which these fragments are derived were previously annotated only as pseudogenes, or predicted informatically. These 5'-YRNA fragments make up a large proportion of all small RNAs (including miRNAs) present in human serum. They are also present in plasma, are not present in exosomes or microvesicles, and circulate as part of a complex with a mass between 100 and 300 kDa. Mouse serum contains far fewer 5'-YRNA fragments, possibly reflecting the much greater copy number of YRNA genes and pseudogenes in humans. The function of the 5'-YRNA fragments is at present unknown, but the processing and secretion of specific YRNAs to produce 5'-end fragments that circulate in stable complexes are consistent with a signaling function.


Assuntos
Pseudogenes/genética , Processamento Pós-Transcricional do RNA , Pequeno RNA não Traduzido/genética , RNA/genética , Adulto , Animais , Sequência de Bases , Northern Blotting , DNA Complementar/química , DNA Complementar/genética , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Pequeno RNA não Traduzido/sangue , Pequeno RNA não Traduzido/química , Ribonucleoproteínas/genética , Análise de Sequência de DNA
10.
BMC Genomics ; 14: 298, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23638709

RESUMO

BACKGROUND: Small RNAs complex with proteins to mediate a variety of functions in animals and plants. Some small RNAs, particularly miRNAs, circulate in mammalian blood and may carry out a signaling function by entering target cells and modulating gene expression. The subject of this study is a set of circulating 30-33 nt RNAs that are processed derivatives of the 5' ends of a small subset of tRNA genes, and closely resemble cellular tRNA derivatives (tRFs, tiRNAs, half-tRNAs, 5' tRNA halves) previously shown to inhibit translation initiation in response to stress in cultured cells. RESULTS: In sequencing small RNAs extracted from mouse serum, we identified abundant 5' tRNA halves derived from a small subset of tRNAs, implying that they are produced by tRNA type-specific biogenesis and/or release. The 5' tRNA halves are not in exosomes or microvesicles, but circulate as particles of 100-300 kDa. The size of these particles suggest that the 5' tRNA halves are a component of a macromolecular complex; this is supported by the loss of 5' tRNA halves from serum or plasma treated with EDTA, a chelating agent, but their retention in plasma anticoagulated with heparin or citrate. A survey of somatic tissues reveals that 5' tRNA halves are concentrated within blood cells and hematopoietic tissues, but scant in other tissues, suggesting that they may be produced by blood cells. Serum levels of specific subtypes of 5' tRNA halves change markedly with age, either up or down, and these changes can be prevented by calorie restriction. CONCLUSIONS: We demonstrate that 5' tRNA halves circulate in the blood in a stable form, most likely as part of a nucleoprotein complex, and their serum levels are subject to regulation by age and calorie restriction. They may be produced by blood cells, but their cellular targets are not yet known. The characteristics of these circulating molecules, and their known function in suppression of translation initiation, suggest that they are a novel form of signaling molecule.


Assuntos
Envelhecimento/genética , Células Sanguíneas/metabolismo , Restrição Calórica , RNA de Transferência/sangue , RNA de Transferência/genética , Animais , Ácido Edético/farmacologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleoproteínas/sangue , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA de Transferência/efeitos dos fármacos , Distribuição Tecidual
11.
Physiol Genomics ; 44(6): 331-44, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22274562

RESUMO

Sarcopenia is an age-associated loss of skeletal muscle mass and strength that increases the risk of disability. Calorie restriction (CR), the consumption of fewer calories while maintaining adequate nutrition, mitigates sarcopenia and many other age-related diseases. To identify potential mechanisms by which CR preserves skeletal muscle integrity during aging, we used mRNA-Seq for deep characterization of gene regulation and mRNA abundance in skeletal muscle of old mice compared with old mice subjected to CR. mRNA-Seq revealed complex CR-associated changes in expression of mRNA isoforms, many of which occur without a change in total message abundance and thus would not be detected by methods other than mRNA-Seq. Functional annotation of differentially expressed genes reveals CR-associated upregulation of pathways involved in energy metabolism and lipid biosynthesis, and downregulation of pathways mediating protein breakdown and oxidative stress, consistent with earlier microarray-based studies. CR-associated changes not noted in previous studies involved downregulation of genes controlling actin cytoskeletal structures and muscle development. These CR-associated changes reflect generally healthier muscle, consistent with CR's mitigation of sarcopenia. mRNA-Seq generates a rich picture of the changes in gene expression associated with CR, and may facilitate identification of genes that are primary mediators of CR's effects.


Assuntos
Envelhecimento/fisiologia , Restrição Calórica , Regulação da Expressão Gênica/fisiologia , Músculo Esquelético/fisiologia , RNA Mensageiro/metabolismo , Sarcopenia/prevenção & controle , Transcriptoma/fisiologia , Animais , Sequência de Bases , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Western Blotting , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Biblioteca Gênica , Masculino , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
12.
PLoS One ; 17(6): e0269554, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35687572

RESUMO

INTRODUCTION: Cancer consistently remains one of the top causes of death in the United States every year, with many cancer deaths preventable if detected early. Circulating serum miRNAs are a promising, minimally invasive supplement or even an alternative to many current screening procedures. Many studies have shown that different serum miRNAs can discriminate healthy individuals from those with certain types of cancer. Although many of those miRNAs are often reported to be significant in one cancer type, they are also altered in other cancer types. Currently, very few studies have investigated serum miRNA biomarkers for multiple cancer types for general cancer screening purposes. METHOD: To identify serum miRNAs that would be useful in screening multiple types of cancers, microarray cancer datasets were curated, yielding 13 different types of cancer with a total of 3352 cancer samples and 2809 non-cancer samples. The samples were divided into training and validation sets. One hundred random forest models were built using the training set to select candidate miRNAs. The selected miRNAs were then used in the validation set to see how well they differentiate cancer from normal samples in an independent dataset. Furthermore, the interactions between these miRNAs and their target mRNAs were investigated. RESULT: The random forest models achieved an average of 97% accuracy in the training set with 95% bootstrap confidence interval of 0.9544 to 0.9778. The selected miRNAs were hsa-miR-663a, hsa-miR-6802-5p, hsa-miR-6784-5p, hsa-miR-3184-5p, and hsa-miR-8073. Each miRNA exhibited high area under the curve (AUC) value using receiver operating characteristic analysis. Moreover, the combination of four out of five miRNAs achieved the highest AUC value of 0.9815 with high sensitivity of 0.9773, indicating that these miRNAs have a high potential for cancer screening. miRNA-mRNA and protein-protein interaction analysis provided insights into how these miRNAs play a role in cancer.


Assuntos
MicroRNA Circulante , MicroRNAs , Neoplasias , Biomarcadores , Humanos , MicroRNAs/genética , Neoplasias/diagnóstico , Neoplasias/genética , RNA Mensageiro/genética , Curva ROC
13.
Biology (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453708

RESUMO

Crohn's disease (CD) and rheumatoid arthritis (RA) are immune mediated inflammatory diseases. Several studies indicate a role for microRNAs (miRNAs) in the pathogenesis of a variety of autoimmune diseases, including CD and RA. Our study's goal was to investigate circulating miRNAs in CD and RA patients to identify potential new biomarkers for early detection and personalized therapeutic approaches for autoimmune diseases. For this study, subjects with CD (n = 7), RA (n = 8) and healthy controls (n = 7) were recruited, and plasma was collected for miRNA sequencing. Comparison of the expression patterns of miRNAs between CD and healthy patients identified 99 differentially expressed miRNAs. Out of these miRNAs, 4 were down regulated, while 95 were up regulated. Comparison of miRNAs between RA and healthy patients identified 57 differentially expressed miRNAs. Out of those, 12 were down regulated, while 45 were up regulated. For all the miRNAs down regulated in CD and RA patients, 420 GO terms for biological processes were similarly regulated between both groups. Therefore, the identification of new plasma miRNAs allows the emergence of new biomarkers that can assist in the diagnosis and treatment of CD and RA.

14.
BMC Bioinformatics ; 12: 451, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22099972

RESUMO

BACKGROUND: A feature common to all DNA sequencing technologies is the presence of base-call errors in the sequenced reads. The implications of such errors are application specific, ranging from minor informatics nuisances to major problems affecting biological inferences. Recently developed "next-gen" sequencing technologies have greatly reduced the cost of sequencing, but have been shown to be more error prone than previous technologies. Both position specific (depending on the location in the read) and sequence specific (depending on the sequence in the read) errors have been identified in Illumina and Life Technology sequencing platforms. We describe a new type of systematic error that manifests as statistically unlikely accumulations of errors at specific genome (or transcriptome) locations. RESULTS: We characterize and describe systematic errors using overlapping paired reads from high-coverage data. We show that such errors occur in approximately 1 in 1000 base pairs, and that they are highly replicable across experiments. We identify motifs that are frequent at systematic error sites, and describe a classifier that distinguishes heterozygous sites from systematic error. Our classifier is designed to accommodate data from experiments in which the allele frequencies at heterozygous sites are not necessarily 0.5 (such as in the case of RNA-Seq), and can be used with single-end datasets. CONCLUSIONS: Systematic errors can easily be mistaken for heterozygous sites in individuals, or for SNPs in population analyses. Systematic errors are particularly problematic in low coverage experiments, or in estimates of allele-specific expression from RNA-Seq data. Our characterization of systematic error has allowed us to develop a program, called SysCall, for identifying and correcting such errors. We conclude that correction of systematic errors is important to consider in the design and interpretation of high-throughput sequencing experiments.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Variação Genética , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Motivos de Nucleotídeos , Polimorfismo de Nucleotídeo Único , Projetos de Pesquisa , Análise de Sequência de DNA/normas , Análise de Sequência de RNA/normas , Transcriptoma
15.
PLoS Comput Biol ; 6(8): e1000888, 2010 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-20856582

RESUMO

The ability to assay genome-scale methylation patterns using high-throughput sequencing makes it possible to carry out association studies to determine the relationship between epigenetic variation and phenotype. While bisulfite sequencing can determine a methylome at high resolution, cost inhibits its use in comparative and population studies. MethylSeq, based on sequencing of fragment ends produced by a methylation-sensitive restriction enzyme, is a method for methyltyping (survey of methylation states) and is a site-specific and cost-effective alternative to whole-genome bisulfite sequencing. Despite its advantages, the use of MethylSeq has been restricted by biases in MethylSeq data that complicate the determination of methyltypes. Here we introduce a statistical method, MetMap, that produces corrected site-specific methylation states from MethylSeq experiments and annotates unmethylated islands across the genome. MetMap integrates genome sequence information with experimental data, in a statistically sound and cohesive Bayesian Network. It infers the extent of methylation at individual CGs and across regions, and serves as a framework for comparative methylation analysis within and among species. We validated MetMap's inferences with direct bisulfite sequencing, showing that the methylation status of sites and islands is accurately inferred. We used MetMap to analyze MethylSeq data from four human neutrophil samples, identifying novel, highly unmethylated islands that are invisible to sequence-based annotation strategies. The combination of MethylSeq and MetMap is a powerful and cost-effective tool for determining genome-scale methyltypes suitable for comparative and association studies.


Assuntos
Metilação de DNA , Genoma Humano , Modelos Genéticos , População/genética , Análise de Sequência de DNA/métodos , Software , Teorema de Bayes , Ilhas de CpG , Genômica/economia , Genômica/métodos , Humanos , Neutrófilos , Sulfitos/química
16.
Sci Rep ; 11(1): 13323, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172784

RESUMO

Lung cancer is one of the deadliest cancers in the world. Two of the most common subtypes, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), have drastically different biological signatures, yet they are often treated similarly and classified together as non-small cell lung cancer (NSCLC). LUAD and LUSC biomarkers are scarce, and their distinct biological mechanisms have yet to be elucidated. To detect biologically relevant markers, many studies have attempted to improve traditional machine learning algorithms or develop novel algorithms for biomarker discovery. However, few have used overlapping machine learning or feature selection methods for cancer classification, biomarker identification, or gene expression analysis. This study proposes to use overlapping traditional feature selection or feature reduction techniques for cancer classification and biomarker discovery. The genes selected by the overlapping method were then verified using random forest. The classification statistics of the overlapping method were compared to those of the traditional feature selection methods. The identified biomarkers were validated in an external dataset using AUC and ROC analysis. Gene expression analysis was then performed to further investigate biological differences between LUAD and LUSC. Overall, our method achieved classification results comparable to, if not better than, the traditional algorithms. It also identified multiple known biomarkers, and five potentially novel biomarkers with high discriminating values between LUAD and LUSC. Many of the biomarkers also exhibit significant prognostic potential, particularly in LUAD. Our study also unraveled distinct biological pathways between LUAD and LUSC.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Biomarcadores/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Técnicas Genéticas , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Masculino , Prognóstico
17.
Med Hypotheses ; 157: 110704, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34688214

RESUMO

Cancers arise from single transformed cells from virtually every organ of the body, divide in a relatively uncontrolled manner, and metastasize widely. A search for a "magic bullet" to precisely diagnose, characterize, and ultimately treat cancer has largely failed because cancer cells do not differ significantly from their organ-specific cells of origin. Instead of searching for genomic, epigenetic, transcriptional, and translational differences between cancers and their cells of origin, we should paradoxically focus on what cancer cells have in common with their untransformed cells of origin. This redirected search will lead to improved diagnostic and therapeutic strategies where therapeutic index considerations and drug-limiting toxicities can largely be circumvented. We cite three cancer examples that illustrate this paradigm-shifting strategy: pseudomyxoma peritonei (PP), metastasis of unknown origin (cancers of unknown primary) (MUO), and cancers that arise from potentially dispensable organs (CAD). In each of these examples, the cell of cancer origin still provides the most reliable road map to its diagnosis, prognosis (biology), and therapy.


Assuntos
Neoplasias Peritoneais , Pseudomixoma Peritoneal , Genômica , Humanos , Prognóstico
18.
J Gerontol A Biol Sci Med Sci ; 76(9): 1561-1570, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34387333

RESUMO

The Ames dwarf (df/df) mouse is a well-established model for delayed aging. MicroRNAs (miRNAs), the most studied small noncoding RNAs (sncRNAs), may regulate ovarian aging to maintain a younger ovarian phenotype in df/df mice. In this study, we profile other types of ovarian sncRNAs, PIWI-interacting RNAs (piRNAs) and piRNA-like RNAs (piLRNAs), in young and aged df/df and normal mice. Half of the piRNAs derive from transfer RNA fragments (tRF-piRNAs). Aging and dwarfism alter the ovarian expression of these novel sncRNAs. Specific tRF-piRNAs that increased with age might target and decrease the expression of the breast cancer antiestrogen resistance protein 3 (BCAR3) gene in the ovaries of old df/df mice. A set of piLRNAs that decreased with age and map to D10Wsu102e mRNA may have trans-regulatory functions. Other piLRNAs that decreased with age potentially target and may de-repress transposable elements, leading to a beneficial impact on ovarian aging in df/df mice. These results identify unique responses in ovarian tissues with regard to aging and dwarfism. Overall, our findings highlight the complexity of the aging effects on gene expression and suggest that, in addition to miRNAs, piRNAs, piLRNAs, tRF-piRNAs, and their potential targets can be central players in the maintenance of a younger ovarian phenotype in df/df mice.


Assuntos
Envelhecimento/genética , Longevidade/genética , Ovário/metabolismo , RNA Interferente Pequeno/metabolismo , Pequeno RNA não Traduzido/metabolismo , Animais , Nanismo Hipofisário/genética , Feminino , Camundongos , Camundongos Knockout , Oogênese/genética , Fenótipo
19.
Aging Cell ; 20(7): e13420, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118183

RESUMO

Reduced inflammation, increased insulin sensitivity, and protection against cancer are shared between humans and mice with GH/IGF1 deficiency. Beyond hormone levels, miRNAs are important regulators of metabolic changes associated with healthy aging. We hypothesized that GH deficiency in humans alters the abundance of circulating miRNAs and that a subset of those miRNAs may overlap with those found in GH-deficient mice. In this study, subjects with untreated congenital isolated GH deficiency (IGHD; n = 23) and control subjects matched by age and sex (n = 23) were recruited and serum was collected for miRNA sequencing. Serum miRNAs from young (6 month) and old (22 month) Ames dwarf (df/df) mice with GH deficiency and their WT littermates (n = 5/age/genotype group) were used for comparison. We observed 14 miRNAs regulated with a genotype by age effect and 19 miRNAs regulated with a genotype effect independent of age in serum of IGHD subjects. These regulated miRNAs are known for targeting pathways associated with longevity such as mTOR, insulin signaling, and FoxO. The aging function was overrepresented in IGHD individuals, mediated by hsa-miR-31, hsa-miR-146b, hsa-miR-30e, hsa-miR-100, hsa-miR-181b-2, hsa-miR-195, and hsa-miR-181b-1, which target the FoxO and mTOR pathways. Intriguingly, miR-181b-5p, miR-361-3p, miR-144-3p, and miR-155-5p were commonly regulated in the serum of humans and GH-deficient mice. In vitro assays confirmed target genes for the main up-regulated miRNAs, suggesting miRNAs regulated in IGHD individuals can regulate the expression of age-related genes. These findings indicate that systemic miRNAs regulated in IGHD individuals target pathways involved in aging in both humans and mice.


Assuntos
Nanismo Hipofisário/genética , MicroRNAs/genética , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
20.
Front Oncol ; 9: 959, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616639

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer and, as indicated by The Oral Cancer Foundation, kills at an alarming rate of roughly one person per hour. With this study, we aimed at better understanding disease mechanisms and identifying minimally invasive disease biomarkers by profiling novel small non-coding RNAs (specifically, tRNA halves and YRNA fragments) in both serum and tumor tissue from humans. Small RNA-Sequencing identified multiple 5' tRNA halves and 5' YRNA fragments that displayed significant differential expression levels in circulation and/or tumor tissue, as compared to control counterparts. In addition, by implementing a modification of weighted gene coexpression network analysis, we identified an upregulated genetic module comprised of 5' tRNA halves and miRNAs (miRNAs were described in previous study using the same samples) with significant association with the cancer trait. By consequently implementing miRNA-overtargeting network analysis, the biological function of the module (and by "guilt by association," the function of the 5' tRNA-Val-CAC-2-1 half) was found to involve the transcriptional targeting of specific genes involved in the negative regulation of the G1/S transition of the mitotic cell cycle. These findings suggest that 5' tRNA-Val-CAC-2-1 half (reduced in serum of OSCC patients and elevated in the tumor tissue) could potentially serve as an OSCC circulating biomarker and/or target for novel anticancer therapies. To our knowledge, this is the first time that the specific molecular function of a 5'-tRNA half is specifically pinpointed in OSCC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa