Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 47(2): 1459-1470, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31823123

RESUMO

At adverse environmental conditions, plants produce various kinds of primary and secondary metabolites to protect themselves. Both primary and secondary metabolites play a significant role during the heat, drought, salinity, genotoxic and cold conditions. A multigene response is activated during the progression of these stresses in the plants which stimulate changes in various signaling molecules, amino acids, proteins, primary and secondary metabolites. Plant metabolism is perturbed because of either the inhibition of metabolic enzymes, shortage of substrates, excess demand for specific compounds or a combination of these factors. In this review, we aim to present how plants synthesize different kinds of natural products during the perception of various abiotic stresses. We also discuss how time-scale variable stresses influence secondary metabolite profiles, could be used as a stress marker in plants. This article has the potential to get the attention of researchers working in the area of quantitative trait locus mapping using metabolites as well as metabolomics genome-wide association.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas/metabolismo , Estresse Fisiológico , Produtos Biológicos/metabolismo , Metaboloma , Metabolismo Secundário
2.
BMC Plant Biol ; 17(1): 103, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615006

RESUMO

BACKGROUND: Plants exposed to environmental stresses draw upon many genetic and epigenetic strategies, with the former sometimes modulated by the latter. This can help the plant, and its immediate progeny, at least, to better endure the stress. Some evidence has led to proposals that (epi) genetic changes can be both selective and sustainably heritable, while other evidence suggests that changes are effectively stochastic, and important only because they induce genetic variation. One type of stress with an arguably high level of stochasticity in its effects is temperature stress. Studies of how heat and cold affect the rates of meiotic recombination (MR) and somatic mutations (SMs, which are potentially heritable in plants) report increases, decreases, or no effect. Collectively, they do not point to any consistent patterns. Some of this variability, however, might arise from the stress being applied for such an extended time, typically days or weeks. Here, we adopted a targeted approach by (1) limiting exposure to one hour; and (2) timing it to coincide with (a) gamete, and early gametophyte, development, a period of high stress sensitivity; and (b) a late stage of vegetative development. RESULTS: For plants (Arabidopsis thaliana) otherwise grown at 22 °C, we measured the effects of a 1 h exposure to cold (12 °C) or heat (32 °C) on the rates of MR, and four types of SMs (frameshift mutations; intrachromosomal recombination; base substitutions; transpositions) in the F1 progeny. One parent (wild type) was stressed, the other (unstressed) carried a genetic event detector. When rates were compared to those in progeny of control (both parents unstressed) two patterns emerged. In the progeny of younger plants (stressed at 36 days; pollinated at 40 days) heat and cold either had no effect (on MR) or (for SMs) had effects that were rare and stochastic. In the progeny of older plants (stressed at 41 days; pollinated at 45 days), while effects were also infrequent, those that were seen followed a consistent pattern: rates of all five genetic events were lowest at 12 °C and highest at 32 °C, i.e. they varied in a "dose-response" manner. This pattern was strongest (or, in the case of MR, only apparent) in progeny whose stressed parent was female. CONCLUSION: While the infrequency of effects suggests the need for cautious inference, the consistency of responses in the progeny of older plants, indicate that in some circumstances the level of stochasticity in inherited genetic responses to heat or cold stress can be context-dependent, possibly reflecting life-cycle stages in the parental generation that are variably stress sensitive.


Assuntos
Arabidopsis/genética , Meiose/genética , Taxa de Mutação , Recombinação Genética , Temperatura , Temperatura Baixa , Temperatura Alta , Padrões de Herança , Plantas Geneticamente Modificadas , Estresse Fisiológico
3.
Plant Physiol ; 168(1): 247-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25810093

RESUMO

In humans, it is well known that the parental reproductive age has a strong influence on mutations transmitted to their progeny. Meiotic nondisjunction is known to increase in older mothers, and base substitutions tend to go up with paternal reproductive age. Hence, it is clear that the germinal mutation rates are a function of both maternal and paternal ages in humans. In contrast, it is unknown whether the parental reproductive age has an effect on somatic mutation rates in the progeny, because these are rare and difficult to detect. To address this question, we took advantage of the plant model system Arabidopsis (Arabidopsis thaliana), where mutation detector lines allow for an easy quantitation of somatic mutations, to test the effect of parental age on somatic mutation rates in the progeny. Although we found no significant effect of parental age on base substitutions, we found that frameshift mutations and transposition events increased in the progeny of older parents, an effect that is stronger through the maternal line. In contrast, intrachromosomal recombination events in the progeny decrease with the age of the parents in a parent-of-origin-dependent manner. Our results clearly show that parental reproductive age affects somatic mutation rates in the progeny and, thus, that some form of age-dependent information, which affects the frequency of double-strand breaks and possibly other processes involved in maintaining genome integrity, is transmitted through the gametes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Taxa de Mutação , Mutação/genética , Contagem de Células , Cromossomos de Plantas/genética , Quebras de DNA de Cadeia Dupla , Mutação da Fase de Leitura , Ploidias , Recombinação Genética , Reprodução , Plântula/genética
4.
BMC Plant Biol ; 15: 210, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26307100

RESUMO

BACKGROUND: Agrobacterium infection, which is widely used to generate transgenic plants, is often accompanied by T-DNA-linked mutations and transpositions in flowering plants. It is not known if Agrobacterium infection also affects the rates of point mutations, somatic homologous recombinations (SHR) and frame-shift mutations (FSM). We examined the effects of Agrobacterium infection on five types of somatic mutations using a set of mutation detector lines of Arabidopsis thaliana. To verify the effect of secreted factors, we exposed the plants to different Agrobacterium strains, including wild type (Ach5), its derivatives lacking vir genes, oncogenes or T-DNA, and the heat-killed form for 48 h post-infection; also, for a smaller set of strains, we examined the rates of three types of mutations at multiple time-points. The mutation detector lines carried a non-functional ß-glucuronidase gene (GUS) and a reversion of mutated GUS to its functional form resulted in blue spots. Based on the number of blue spots visible in plants grown for a further two weeks, we estimated the mutation frequencies. RESULTS: For plants co-cultivated for 48 h with Agrobacterium, if the strain contained vir genes, then the rates of transversions, SHRs and FSMs (measured 2 weeks later) were lower than those of uninfected controls. In contrast, co-cultivation for 48 h with any of the Agrobacterium strains raised the transposition rates above control levels. The multiple time-point study showed that in seedlings co-cultivated with wild type Ach5, the reduced rates of transversions and SHRs after 48 h co-cultivation represent an apparent suppression of an earlier short-lived increase in mutation rates (peaking for plants co-cultivated for 3 h). An increase after 3 h co-cultivation was also seen for rates of transversions (but not SHR) in seedlings exposed to the strain lacking vir genes, oncogenes and T-DNA. However, the mutation rates in plants co-cultivated for longer times with this strain subsequently dropped below levels seen in uninfected controls, consistent with the results of the single time-point study. CONCLUSIONS: The rates of various classes of mutations that result from Agrobacterium infection depend upon the duration of infection and the type of pathogen derived factors (such as Vir proteins, oncoproteins or T-DNA) possessed by the strain. Strains with vir genes, including the type used for plant transformation, suppressed selected classes of somatic mutations. Our study also provides evidence of a pathogen that can at least partly counter the induction of mutations in an infected plant.


Assuntos
Agrobacterium tumefaciens/genética , Arabidopsis/genética , Genes Bacterianos , Mutação/genética , Supressão Genética , Cromossomos de Plantas/genética , Escherichia coli/metabolismo , Mutação da Fase de Leitura , Recombinação Homóloga/genética , Plantas Geneticamente Modificadas , Fatores de Tempo
5.
Biomolecules ; 11(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946149

RESUMO

In nature, plants are exposed to several environmental stresses that can be continuous or recurring. Continuous stress can be lethal, but stress after priming can increase the tolerance of a plant to better prepare for future stresses. Reports have suggested that transcription factors are involved in stress memory after recurrent stress; however, less is known about the factors that regulate the resetting of stress memory. Here, we uncovered a role for Constitutive Photomorphogenesis 5A (CSN5A) in the regulation of stress memory for resetting transcriptional memory genes (APX2 and HSP22) and H3K4me3 following recurrent heat stress. Furthermore, CSN5A is also required for the deposition of H3K4me3 following recurrent heat stress. Thus, CSN5A plays an important role in the regulation of histone methylation and transcriptional stress memory after recurrent heat stress.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Complexo do Signalossomo COP9/fisiologia , Resposta ao Choque Térmico , Histonas/fisiologia , Fatores de Transcrição/fisiologia , Regulação da Expressão Gênica de Plantas , Metilação , Subunidades Proteicas/fisiologia , Estresse Fisiológico
6.
Biomolecules ; 9(12)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795414

RESUMO

The COP9 (constitutive photomorphogenesis 9) signalosome (CSN) is an evolutionarily conserved protein complex which regulates various growth and developmental processes. However, the role of CSN during environmental stress is largely unknown. Using Arabidopsis as model organism, we used CSN hypomorphic mutants to study the role of the CSN in plant responses to environmental stress and found that heat stress specifically enhanced the growth of csn5a-1 but not the growth of other hypomorphic photomorphogenesis mutants tested. Following heat stress, csn5a-1 exhibits an increase in cell size, ploidy, photosynthetic activity, and number of lateral roots and an upregulation of genes connected to the auxin response. Immunoblot analysis revealed an increase in deneddylation of CUL1 but not CUL3 following heat stress in csn5a-1, implicating improved CUL1 activity as a basis for the improved growth of csn5a-1 following heat stress. Studies using DR5::N7-VENUS and DII-VENUS reporter constructs confirm that the heat-induced growth is due to an increase in auxin signaling. Our results indicate that CSN5A has a specific role in deneddylation of CUL1 and that CSN5A is required for the recovery of AUX/IAA repressor levels following recurrent heat stress to regulate auxin homeostasis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Complexo do Signalossomo COP9/fisiologia , Subunidades Proteicas/fisiologia , Estresse Fisiológico , Proteínas Culina/metabolismo , Temperatura Alta , Ácidos Indolacéticos/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa