RESUMO
Bladder cancer (BLCA) is one of the most prevalent malignancies worldwide with a high mortality rate and poor response to immunotherapy in patients expressing lower programmed death ligand 1 (PD-L1) levels. Nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting enzyme responsible for the biosynthesis of nicotinamide adenine dinucleotide (NAD+) from nicotinamide was reported to be overexpressed in various cancers; however, the role of NAMPT in BLCA is obscure. Immunohistochemistry of tissue microarrays, a real-time polymerase chain reaction, Western blotting, proliferation assay, NAD+ quantification, transwell-migration assay, and colony-formation assay were performed to measure NAMPT and PD-L1 expression levels in patients and the effect of NAMPT inhibition on T24 cells. Our study revealed that NAMPT expression was upregulated in BLCA patients with different grades and associated with poor T-cell infiltration. Notably, FK866-mediated NAMPT inhibition decreased cell viability by depleting NAD+, and reducing the migration ability and colony-formation ability of T24 cells. Interestingly, NAMPT negatively regulated PD-L1 under an interferon (IFN)-γ-mediated microenvironment. However, exogenous NAMPT activator has no effect on PD-L1. NAD+ supplementation also only increased PD-L1 in the absence of IFN-γ. Conclusively, NAMPT is crucial for BLCA tumorigenic properties, and it regulates expression of the PD-L1 immune checkpoint protein. NAMPT could be considered a target for modulating sensitivity to immunotherapy.
Assuntos
Citocinas , NAD , Nicotinamida Fosforribosiltransferase , Neoplasias da Bexiga Urinária , Humanos , Antígeno B7-H1/genética , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Microambiente Tumoral , Neoplasias da Bexiga Urinária/tratamento farmacológico , Citocinas/metabolismoRESUMO
Metformin, the most commonly prescribed drug for the treatment of diabetes, is increasingly used during pregnancy to address various disorders such as diabetes, obesity, preeclampsia, and metabolic diseases. However, its impact on neocortex development remains unclear. Here, we investigated the direct effects of metformin on neocortex development, focusing on ERK and p35/CDK5 regulation. Using a pregnant rat model, we found that metformin treatment during pregnancy induces small for gestational age (SGA) and reduces relative cortical thickness in embryos and neonates. Additionally, we discovered that metformin inhibits neural progenitor cell proliferation in the sub-ventricular zone (SVZ)/ventricular zone (VZ) of the developing neocortex, a process possibly mediated by ERK inactivation. Furthermore, metformin induces neuronal apoptosis in the SVZ/VZ area of the developing neocortex. Moreover, metformin retards neuronal migration, cortical lamination, and differentiation, potentially through p35/CDK5 inhibition in the developing neocortex. Remarkably, compensating for p35 through in utero electroporation partially rescues metformin-impaired neuronal migration and development. In summary, our study reveals that metformin disrupts neocortex development by inhibiting neuronal progenitor proliferation, neuronal migration, cortical layering, and cortical neuron maturation, likely via ERK and p35/CDK5 inhibition. Consequently, our findings advocate for caution in metformin usage during pregnancy, given its potential adverse effects on fetal brain development.