RESUMO
This Letter presents the results from the MiniBooNE experiment within a full "3+1" scenario where one sterile neutrino is introduced to the three-active-neutrino picture. In addition to electron-neutrino appearance at short baselines, this scenario also allows for disappearance of the muon-neutrino and electron-neutrino fluxes in the Booster Neutrino Beam, which is shared by the MicroBooNE experiment. We present the 3+1 fit to the MiniBooNE electron-(anti)neutrino and muon-(anti)neutrino data alone and in combination with MicroBooNE electron-neutrino data. The best-fit parameters of the combined fit with the exclusive charged-current quasielastic analysis (inclusive analysis) are Δm^{2}=0.209 eV^{2}(0.033 eV^{2}), |U_{e4}|^{2}=0.016(0.500), |U_{µ4}|^{2}=0.500(0.500), and sin^{2}(2θ_{µe})=0.0316(1.0). Comparing the no-oscillation scenario to the 3+1 model, the data prefer the 3+1 model with a Δχ^{2}/d.o.f.=24.7/3(17.3/3), a 4.3σ(3.4σ) preference assuming the asymptotic approximation given by Wilks's theorem.
RESUMO
The MiniBooNE experiment at Fermilab reports results from an analysis of ν_{e} appearance data from 12.84×10^{20} protons on target in neutrino mode, an increase of approximately a factor of 2 over previously reported results. A ν_{e} charged-current quasielastic event excess of 381.2±85.2 events (4.5σ) is observed in the energy range 200
RESUMO
We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (K^{+}âµ^{+}ν_{µ}) at the NuMI beamline absorber. These signal ν_{µ}-carbon events are distinguished from primarily pion decay in flight ν_{µ} and ν[over ¯]_{µ} backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9σ level. The muon kinetic energy, neutrino-nucleus energy transfer (ω=E_{ν}-E_{µ}), and total cross section for these events are extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of ω using neutrinos, a quantity thus far only accessible through electron scattering.
RESUMO
The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}â²10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01
RESUMO
Results are reported from an improved measurement of ν_{µ}âν_{e} transitions by the NOvA experiment. Using an exposure equivalent to 6.05×10^{20} protons on target, 33 ν_{e} candidates are observed with a background of 8.2±0.8 (syst.). Combined with the latest NOvA ν_{µ} disappearance data and external constraints from reactor experiments on sin^{2}2θ_{13}, the hypothesis of inverted mass hierarchy with θ_{23} in the lower octant is disfavored at greater than 93% C.L. for all values of δ_{CP}.
RESUMO
This Letter reports new results on muon neutrino disappearance from NOvA, using a 14 kton detector equivalent exposure of 6.05×10^{20} protons on target from the NuMI beam at the Fermi National Accelerator Laboratory. The measurement probes the muon-tau symmetry hypothesis that requires maximal θ_{23} mixing (θ_{23}=π/4). Assuming the normal mass hierarchy, we find Δm_{32}^{2}=(2.67±0.11)×10^{-3} eV^{2} and sin^{2}θ_{23} at the two statistically degenerate values 0.404_{-0.022}^{+0.030} and 0.624_{-0.030}^{+0.022}, both at the 68% confidence level. Our data disfavor the maximal mixing scenario with 2.6σ significance.
RESUMO
The MiniBooNE experiment at Fermilab reports results from an analysis of ν[over ¯](e) appearance data from 11.27×10(20) protons on target in the antineutrino mode, an increase of approximately a factor of 2 over the previously reported results. An event excess of 78.4±28.5 events (2.8σ) is observed in the energy range 200
RESUMO
The MiniBooNE experiment at Fermilab reports results from a search for ¯ν_{µ}â¯ν_{e} oscillations, using a data sample corresponding to 5.66×10²° protons on target. An excess of 20.9±14.0 events is observed in the energy range 475