Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Med Virol ; 34(1): e2507, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282394

RESUMO

Vaccines against coronavirus disease 2019 (COVID-19) have been discovered within a very small duration of time as compared to the traditional way for the development of vaccines, which raised the question about the safety and efficacy of the approved vaccines. The purpose of this study is to look at the effectiveness and safety of vaccine platforms against the incidence of COVID-19. The literature search was performed on PubMed/Medline, Cochrane, and clinical trials.gov databases for studies published between 1 January 2020 and 19 February 2022. Preferred Reporting Items for Systemic Review and Meta-Analysis Statement guidelines were followed. Among 284 articles received by keywords, a total of 11 studies were eligible according to the inclusion and exclusion criteria (studies in special populations, e.g., pregnant women, paediatric patients, editorials, case reports, review articles, preclinical and in vitro studies) of the study. A total of 247,186 participants were considered for randomisation at baseline, among them, 129,572 (52.42%) were provided with vaccine (Intervention group) and 117,614 (47.58%) with the placebo (Control group). A pooled fold change estimation of 0.19 (95% CI: 0.12-0.31, p < 0.0001) showed significant protection against the incidence of COVID-19 in the vaccines received group versus the placebo group. mRNA based, inactivated vaccines and non-replicating viral vector-based vaccines showed significantly protection against the incidence of COVID-19 compared to placebo with pooled fold change estimation was 0.08 (95% CI: 0.06-0.10), 0.20 (95% CI: 0.14-0.29) and 0.36 (95% CI: 0.28-0.46), respectively. Injection site discomfort and fatigue were the most common side effect observed in mRNA, non-replicating viral vector, inactivated, and protein subunit-based vaccines. All the approved vaccines were found safe and efficacious but mRNA-based vaccines were found to be more efficacious against SARS-CoV-2 than other platforms.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos
2.
Mol Divers ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709459

RESUMO

Malaria caused by P. falciparum, has been recognized as one of the major infectious diseases causing the death of several patients as per the reports from the World Health Organization. In search of effective therapeutic agents against malaria, several research groups have started working on the design and development of novel heterocycles as anti-malarial agents. Heterocycles have been recognized as the pharmacophoric features for the different types of medicinally important activities. Among all these heterocycles, nitrogen containing aza-heterocycles should not be underestimated owing to their wide therapeutic window. Amongst the aza-heterocycles, indoles and fused indoles such as marinoquinolines, isocryptolepines and their regioisomers, manzamines, neocryptolenines, and indolones have been recognized as anti-malarial agents active against P. falciparum. The present work unleashes the synthetic attempts of anti-malarial indoles and fused indoles through cyclocondensation, Fischer-indole synthesis, etc. along with the brief discussions on structure-activity relationships, in vitro or in vivo studies for the broader interest of these medicinal chemists, working on their design and development as potential anti-malarial agents.

3.
Ann Pharm Fr ; 82(3): 464-472, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37866638

RESUMO

OBJECTIVE: High Performance liquid chromatography is an integral analytical tool in assessing drug product stability. A simple, selective, precise, accurate and stability indicating RP-HPLC method was developed and validated for analysis of Tadalafil and Macitentan in synthetic mixture. MATERIAL AND METHOD: Chromatographic separation was performed using Phenomex Gemini C18 (25cm×4.6nm, 5µm) Column. The mobile phase consists of (10mM Ammonium Acetate in water and [Methanol: ACN 20: 80% v/v]) (40: 60% v/v). The flow rate was set to be 1.0mL/min. The injection volume was 10.00µL. The detection was carried out at 260nm at column temperature 35°C. RESULTS: The method was validating according to ICH Q2R1 guideline for accuracy, precision, reproducibility, specificity, robustness and detection and quantification limits. Stability testing was performed on Tadalafil and Macitentan and it was found that these degraded sufficiently in all applied chemical and physical conditions. Linearity for Tadalafil and Macitentan was observed 0.4-100µg/mL and 0.1-25µg/mL with correlation coefficient at 0.9999. LOD and LOQ 0.008µg/mL and 0.024µg/mL and 0.001µg/mL and 0.0029µg/mL for Tadalafil and Macitentan respectively. CONCLUSION: The developed RP-HPLC method was found to be suitable for the determination of both the drugs.

5.
In Silico Pharmacol ; 12(1): 8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204437

RESUMO

Uridine 5'-diphospho-glucuronosyltransferases (UGTs) have been considered as a family of enzymes responsible for the glucuronidation process, a crucial phase II detoxification reaction. Among the various UGT isoforms, UGTs A10 and B7 have garnered significant attention due to their broad substrate specificity and involvement in the metabolism of numerous compounds. Recent studies have suggested that certain vitamins may exert inhibitory effects on UGT activity, thereby influencing the metabolism of drugs, environmental toxins, and endogenous substances, ultimately impacting their biological activities. In the present study, the inhibition potential of vitamins (A, B1, B2, B3, B5, B6, B7, B9, D3, E, and C) on UGT1A10 and UGT2B7 was determined using in silico and in vitro approaches. A 3-dimensional model of UGT1A10 and UGT2B7 enzymes was built using Swiss Model, ITASSER, and ROSETTA and verified using Ramachandran plot and SAVES tools. Molecular docking studies revealed that vitamins interact with UGT1A10 and UGT2B7 enzymes by binding within the active site pocket and interacting with residues. Among all vitamins, the highest binding affinity predicted by molecular docking was - 8.61 kcal/mol with vitamin B1. The in vitro studies results demonstrated the inhibition of the glucuronidation activity of UGTs by vitamins A, B1, B2, B6, B9, C, D, and E, with IC50 values of 3.28 ± 1.07 µg/mL, 24.21 ± 1.11 µg/mL, 3.69 ± 1.02 µg/mL, 23.60 ± 1.08 µg/mL, 6.77 ± 1.08 µg/mL, 83.95 ± 1.09 µg/ml, 3.27 ± 1.13 µg/mL and 3.89 ± 1.12 µg/mL, respectively. These studies provided the valuable insights into the mechanisms underlying drug-vitamins interactions and have the potential to guide personalized medicine approaches, optimizing therapeutic outcomes, and ensuring patient safety. Indeed, further research in the area of UGT (UDP-glucuronosyltransferase) inhibition by vitamins is essential to fully understand the clinical relevance and implications of these interactions. UGTs play a crucial role in the metabolism and elimination of various drugs, toxins, and endogenous compounds in the body. Therefore, any factors that can modulate UGT activity, including vitamins, can have implications for drug metabolism, drug-drug interactions, and overall health. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00182-0.

6.
J Pharm Bioallied Sci ; 8(4): 321-326, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28216957

RESUMO

OBJECTIVES: The aim of the present work was to synthesize a novel series of pyrazolo[3,4-d]pyrimidin-4(5H)-one derivatives and evaluate their in vitro antimicrobial activity. METHODS: Cyclization of an ortho-amino ester of 1-(2,4-dinitrophenyl)pyrazole with various aliphatic/aromatic nitriles under different reaction conditions such as conventional and microwave assisted synthesis, provided pyrazolo[3,4-d] pyrimidin-4(5H)-one derivatives. All the synthesized compounds were evaluated in vitro for their antimicrobial activity against selected bacteria and fungi by agar well diffusion method. RESULTS: All newly synthesized compounds were characterized using spectral and elemental analysis. Compounds 2e, 2f, and 2g showed significant antimicrobial activity as compared to standard drugs used. CONCLUSION: The newly synthesized compounds could be useful templates for the design and optimization of more active analogs as a possible antimicrobial agent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa