RESUMO
PURPOSE: To investigate the association between sleep quality and meibomian gland dropout characteristics in dry eye patients. METHODS: This cross-sectional study involved 172 dry eye patients with no history of conditions or factors that could confound dry eye disease (DED) and/or meibomian gland dropout. Participants underwent a comprehensive anterior eye assessment. The validated Athens Insomnia Scale (AIS) and Pittsburgh Sleep Quality Index (PSQI) were used to assess sleep quality. The measured outcomes were dry eye symptoms via the Ocular Surface Disease Index (OSDI), tear breakup time (TBUT), corneal fluorescein staining, meibomian gland function, and extent of meibomian gland dropout. RESULTS: Of the dry eye participants, 34.9% had severe meibomian gland dropout (SMD) and 41.3% of the subjects had poor sleep quality. Patients with poor sleep quality had greater Meibomian gland dropout while the sleep AIS and PSQI scores were significantly correlated with Meibomian gland dropout (r = 0.495, p < 0.001; r = 0.24, p = 0.002; respectively). SMD patients had worse scores on all components of the PSQI (all p < 0.001, corrected for age and sex). Use of sleep medication, poor habitual sleep efficiency, and sleep disturbance were particularly prevalent in SMD patients as compared to Non-severe meibomian gland dropout (NSMD) patients. Multivariate logistic regression analysis revealed that sleep quality was eventually associated with female gender (p = 0.042), OSDI (p = 0.004), TBUT (p = 0.036), and Meibomian gland dropout score (p < 0.001). CONCLUSION: It was found that greater meibomian gland dropout in poor sleep quality individuals is especially related to use of sleep medication, poor habitual sleep efficiency, and sleep disturbance. This finding suggests a need for long-term studies of anterior eye health in people with poor sleep quality.
RESUMO
Purpose: High recurrence rate of chalaziosis and serious side effects of repeated surgical excision may help increase awareness of recurrent and refractory chalaziosis as a serious disorder affecting many aspects of life. This present study was aimed to investigate the efficacy and safety of intense pulse light (IPL) therapy and meibomian gland expression (MGX) in cases of recurrent chalaziosis after excision surgery. Methods: Forty-two consecutive recurrent chalaziosis cases (35 patients) treated with IPL-MGX were enrolled. All patients initially underwent excision with curettage. One week after lesion excision, IPL-MGX were performed at least 3 times. Another set of age- and sex-matched consecutive cases of recurrent chalaziosis, who received excision with curettage, but went without IPL-MGX treatment, were collected to calculate recurrence rate. Treatment efficacy and safety were measured before IPL-MGX treatment and 1 month after the final treatment. Results: The majority of patients received 4 sessions of IPL-MGX therapy (20 patients; 57.1%) or 3 sessions of IPL-MGX therapy (10 patients; 28.6%), resulting in a lower recurrence rate of 11.4% compared to that of recurrent chalaziosis without IPL-MGX cases (45.6%, P < 0.001). The NIBUT was significantly prolonged from 3.9 ± 1.8 to 5.1 ± 1.7 s at 4 weeks after the final treatment (P = 0.001). Similarly, mean TMH score improved and was statistically significant when compared with baseline (0.17 ± 0.07 vs. 0.21± 0.09; P = 0.008). Furthermore, meibum quality and expressibility scores significantly improved at 4 weeks following the final treatment (both P < 0.001). Other variables, such as intraocular pressure and visual acuity, remained unaffected following treatment. Conclusion: The combination of IPL treatment and MGX offers a low risk and effective option in decreasing the recurrence rate of recurrent chalaziosis by improving meibomian gland function. IPL-MGX may be considered for first-line treatment in recurrent or refractory cases post excision.