Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 34(1): 350-364, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914699

RESUMO

Peroxisome proliferator-activated receptor (PPAR)-α activation controls hepatic lipid homeostasis, stimulating fatty acid oxidation, and adapting the metabolic response to lipid overload and storage. Here, we investigate the effect of palmitoylethanolamide (PEA), an endogenous PPAR-α ligand, in counteracting hepatic metabolic inflexibility and mitochondrial dysfunction induced by high-fat diet (HFD) in mice. Long-term PEA administration (30 mg/kg/die per os) in HFD mice limited hepatic lipid accumulation, increased energy expenditure, and markedly reduced insulin resistance. In isolated liver mitochondria, we have demonstrated PEA capability to modulate mitochondrial oxidative capacity and energy efficiency, leading to the reduction of intracellular lipid accumulation and oxidative stress. Moreover, we have evaluated the effect of PEA on mitochondrial bioenergetics of palmitate-challenged HepG2 cells, using Seahorse analyzer. In vitro data showed that PEA recovered mitochondrial dysfunction and reduced lipid accumulation in insulin-resistant HepG2 cells, increasing fatty acid oxidation. Mechanistic studies showed that PEA effect on lipid metabolism was limited by AMP-activated protein kinase (AMPK) inhibition, providing evidence for a pivotal role of AMPK in PEA-induced adaptive metabolic setting. All these findings identify PEA as a modulator of hepatic lipid and glucose homeostasis, limiting metabolic inflexibility induced by nutrient overload.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Etanolaminas/farmacologia , Fígado/metabolismo , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Amidas , Animais , Células Hep G2 , Humanos , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/patologia , PPAR alfa/metabolismo
2.
Mol Pharm ; 15(1): 21-30, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29140706

RESUMO

Ursodeoxycholic acid (UDCA) is considered the first-choice therapy for cholestatic disorders. To enhance solubility and exploit specific transporters in liver, we synthesized a new galactosyl pro-drug of UDCA (UDCAgal). Ethinylestradiol (EE)-induced cholestasis was used to study and compare the effects of UDCAgal with UDCA on bile flow, hepatic canalicular efflux transporter expression, and inflammation. UDCAgal resulted quite stable both at pH 7.4 and 1.2 and regenerated the parent drug after incubation in human plasma. Its solubility, higher than UDCA, was pH- and temperature-independent. UDCAgal displayed a higher cell permeation compared to UDCA in liver HepG2 cells. Moreover, in cholestatic rats, UDCAgal showed a higher potency compared to UDCA in reducing serum biomarkers (AST, ALT, and ALP) and cytokines (TNF-α and IL-1ß). The higher effect of UDCAgal on the increase in bile salt export pump and multidrug resistance-associated protein 2 transcription indicated an improved spillover of bile acids from the liver. UDCAgal showed a reduction in CCL2, as well as TNF-α, IL-1ß, and cyclooxygeanse-2 mRNAs, indicating a reduction in hepatic neutrophil accumulation and inflammation. Moreover, UDCAgal, similarly to UDCA, heightens bile flow and modulates biliary acids secretion. These results indicate that UDCAgal has a potential in the treatment of cholestatic disease.


Assuntos
Colestase/tratamento farmacológico , Estrogênios/toxicidade , Ácido Ursodesoxicólico/química , Ácido Ursodesoxicólico/uso terapêutico , Animais , Colestase/metabolismo , Ciclo-Oxigenase 2/sangue , Etinilestradiol/toxicidade , Células Hep G2 , Humanos , Interleucina-1beta/sangue , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/sangue , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Ratos , Ratos Wistar , Solubilidade , Fator de Necrose Tumoral alfa/sangue , Ácido Ursodesoxicólico/síntese química
3.
J Nutr ; 145(6): 1202-10, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25926411

RESUMO

BACKGROUND: Although gut microbiota perturbation is recognized as a main contributing factor to the pathogenesis of inflammatory bowel disease, synbiotic therapies, as prevention or treatment, have remained overlooked. OBJECTIVE: To verify whether Lactobacillus paracasei B21060-based synbiotic therapy could prevent or repair colon damage in a mouse model of colitis, we performed treatments before and after colitis induction. METHODS: The experimental study lasted 19 d. Experimental colitis was induced in BALB/c mice by giving them dextran sodium sulfate (DSS, 2.5%) in drinking water (days 7-12) followed by DSS-free water (days 13-19) (DSS group). L. paracasei B21060 (2.5 × 10(7) bacteria/10 g body weight) was orally administered 7 d before DSS [synbiotic as preventive treatment (P-SYN) group] or 2 d after DSS [synbiotic as therapeutic treatment (T-SYN) group] until day 19. Another group was not treated with DSS or synbiotic and was given tap water (control group), for a total of 4 groups. RESULTS: Compared with the DSS group, both synbiotic-treated groups had significantly less pronounced weight loss and colon damage. Consistently, mRNA levels of chemokine (C-C motif) ligand 5 in the colon were reduced in both P-SYN and T-SYN mice compared with the DSS group (51%, P < 0.05 and 72%, P < 0.001, respectively). In the P-SYN and T-SYN groups, neutrophil elastase transcription was also reduced (51%, P < 0.01 and 59%, P < 0.001, respectively). Accordingly, oxidative/nitrosative stress was lower in P-SYN and T-SYN mice than in the DSS group. In P-SYN and T-SYN mice, colonic gene expression of tumor necrosis factor (47%, P < 0.01 and 61%, P < 0.001, respectively) and prostaglandin-endoperoxide synthase 2 (45%, P < 0.01 and 35%, P < 0.05, respectively) was lower, whereas interleukin 10 mRNA was doubled compared with the DSS group (both P < 0.5). Remarkably, epithelial barrier integrity (zonulin and occludin) and gut protection (ß-defensin and mucin expression) were completely restored in P-SYN and T-SYN mice. CONCLUSIONS: Our data highlight the beneficial effects of this synbiotic formulation in acutely colitic mice, suggesting that it may have therapeutic and possibly preventive efficacy in human colitis.


Assuntos
Colite/terapia , Trato Gastrointestinal/microbiologia , Lactobacillus , Simbióticos , Animais , Colite/prevenção & controle , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Trato Gastrointestinal/metabolismo , Inflamação/prevenção & controle , Inflamação/terapia , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mucina-1/genética , Mucina-1/metabolismo , Estresse Oxidativo , PPAR gama/genética , PPAR gama/metabolismo , Peroxidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima , beta-Defensinas/genética , beta-Defensinas/metabolismo
4.
Toxicol Appl Pharmacol ; 279(3): 401-408, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978599

RESUMO

Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of "leptin-resistance" in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases.


Assuntos
Adipócitos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Leptina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Animais , Compostos Azo , Western Blotting , Diferenciação Celular , Corantes , Interleucina-6/biossíntese , Interleucina-6/genética , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/biossíntese , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores para Leptina/biossíntese , Receptores para Leptina/efeitos dos fármacos , Receptores para Leptina/genética , Fator de Transcrição STAT3/biossíntese , Fator de Transcrição STAT3/genética , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Proteínas Supressoras da Sinalização de Citocina/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
5.
Sci Rep ; 9(1): 4832, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886232

RESUMO

The use/misuse of antibiotics leads to pathological features referring to antibiotic-induced intestinal injury (AIJ), a clinical issue that plays a prominent role in the development of severe digestive disturbances. AIJ is characterized by loss of intestinal architecture and function, dysbiosis and bacterial translocation into the liver, triggering hepatic inflammation. This study aimed at determining the beneficial effect of N-(1-carbamoyl-2-phenylethyl) butyramide (FBA), a butyrate releasing compound, in ceftriaxone-induced intestinal injury. To this purpose, mice receiving ceftriaxone (8 g∙kg-1/die, per os) for five days, were treated with FBA (212,5 mg∙kg-1/die, per os) for five or fifteen days. FBA modulated key players of innate immunity in antibiotic-injured gut tissues, reducing inflammatory process and improving the anti-inflammatory and resolving pattern. FBA also improved colonic architecture and intestinal integrity. Interestingly, we also observed a remodeling of gut microbiota composition related to an increase of metabolic pathways related to lactate and butyrate production. At mechanistic level, FBA induced histone acetylation and increased the expression of GPR43 and monocarboxylate transporter 1 in colon. Our data clearly demonstrated that FBA has multiple converging mechanisms in limiting intestinal and hepatic alterations to counteract AIJ.


Assuntos
Antibacterianos/efeitos adversos , Butiratos/administração & dosagem , Colite/tratamento farmacológico , Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Translocação Bacteriana/efeitos dos fármacos , Butiratos/metabolismo , Ceftriaxona/efeitos adversos , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Disbiose/imunologia , Disbiose/microbiologia , Histonas/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Ácido Láctico/metabolismo , Masculino , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simportadores/metabolismo
6.
Mol Nutr Food Res ; 61(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27794174

RESUMO

SCOPE: Virgin olive oil is an essential component of the Mediterranean diet. Its antioxidant and anti-inflammatory properties are mainly linked to phenolic contents. This study aims to evaluate the beneficial effects of a polyphenol-rich virgin olive oil (HPCOO) or olive oil without polyphenols (WPOO) in rats fed high-fat diet (HFD). METHODS AND RESULTS: Male Sprague-Dawley rats were divided into four groups based on the different types of diet: (I) standard diet (STD); (II) HFD; (III) HFD containing WPOO, and (IV) HFD containing HPCOO. HPCOO and WPOO induced a significant improvement of HFD-induced impaired glucose homeostasis (by hyperglycemia, altered oral glucose tolerance, and HOMA-IR) and inflammatory status modulating pro- and anti-inflammatory cytokines (TNF-α, IL-1, and IL-10) and adipokines. Moreover, HPCOO and less extensively WPOO, limited HFD-induced liver oxidative and nitrosative stress and increased hepatic fatty acid oxidation. To study mitochondrial performance, oxidative capacity and energy efficiency were also evaluated in isolated liver mitochondria. HPCOO, but not WPOO, reduced H2 O2 release and aconitase activity by decreasing degree of coupling, which plays a major role in the control of mitochondrial reactive oxygen species emission. CONCLUSION: HPCOO limits HFD-induced insulin resistance, inflammation, and hepatic oxidative stress, preventing nonalcoholic fatty liver disease progression.


Assuntos
Hepatite/dietoterapia , Resistência à Insulina , Mitocôndrias Hepáticas/efeitos dos fármacos , Azeite de Oliva/farmacologia , Polifenóis/farmacologia , Adipocinas/sangue , Animais , Citocinas/sangue , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Glucose/metabolismo , Hepatite/etiologia , Hepatite/fisiopatologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Azeite de Oliva/química , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Tocoferóis/farmacologia
7.
Diabetes ; 66(5): 1405-1418, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223285

RESUMO

Fatty liver, oxidative stress, and mitochondrial dysfunction are key pathophysiological features of insulin resistance and obesity. Butyrate, produced by fermentation in the large intestine by gut microbiota, and its synthetic derivative, the N-(1-carbamoyl-2-phenyl-ethyl) butyramide, FBA, have been demonstrated to be protective against insulin resistance and fatty liver. Here, hepatic mitochondria were identified as the main target of the beneficial effect of both butyrate-based compounds in reverting insulin resistance and fat accumulation in diet-induced obese mice. In particular, butyrate and FBA improved respiratory capacity and fatty acid oxidation, activated the AMPK-acetyl-CoA carboxylase pathway, and promoted inefficient metabolism, as shown by the increase in proton leak. Both treatments consistently increased utilization of substrates, especially fatty acids, leading to the reduction of intracellular lipid accumulation and oxidative stress. Finally, the shift of the mitochondrial dynamic toward fusion by butyrate and FBA resulted in the improvement not only of mitochondrial cell energy metabolism but also of glucose homeostasis. In conclusion, butyrate and its more palatable synthetic derivative, FBA, modulating mitochondrial function, efficiency, and dynamics, can be considered a new therapeutic strategy to counteract obesity and insulin resistance.


Assuntos
Butiratos/farmacologia , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Obesidade/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/efeitos dos fármacos , Acetil-CoA Carboxilase/metabolismo , Animais , Western Blotting , Composição Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Glucose/metabolismo , Teste de Tolerância a Glucose , Células Hep G2 , Homeostase/efeitos dos fármacos , Humanos , Fígado/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias Hepáticas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
8.
J Nutr Biochem ; 30: 108-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27012627

RESUMO

The potential mechanisms of action of polyphenols in nonalcoholic fatty liver disease (NAFLD) are overlooked. Here, we evaluate the beneficial therapeutic effects of hydroxytyrosol (HT), the major metabolite of the oleuropein, in a nutritional model of insulin resistance (IR) and NAFLD by high-fat diet. Young male rats were divided into three groups receiving (1) standard diet (STD; 10.5% fat), (2) high-fat diet (HFD; 58.0% fat) and (3) HFD+HT (10 mg/kg/day by gavage). After 5 weeks, the oral glucose tolerance test was performed, and at 6th week, blood sample and tissues (liver and duodenum) were collected for following determinations. The HT-treated rats showed a marked reduction in serum AST, ALT and cholesterol and improved glucose tolerance and insulin sensitivity, reducing homeostasis model assessment index. HT significantly corrected the metabolic impairment induced by HFD, increasing hepatic peroxisome proliferator activated receptor PPAR-α and its downstream-regulated gene fibroblast growth factor 21, the phosphorylation of acetyl-CoA carboxylase and the mRNA carnitine palmitoyltransferase 1a. HT also reduced liver inflammation and nitrosative/oxidative stress decreasing the nitrosylation of proteins, reactive oxygen species production and lipid peroxidation. Moreover, HT restored intestinal barrier integrity and functions (fluorescein isothiocyanate-dextran permeability and mRNA zona occludens ZO-1). Our data demonstrate the beneficial effect of HT in the prevention of early inflammatory events responsible for the onset of IR and steatosis, reducing hepatic inflammation and nitrosative/oxidative stress and restoring glucose homeostasis and intestinal barrier integrity.


Assuntos
Modelos Animais de Doenças , Hepatite/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/terapia , Álcool Feniletílico/análogos & derivados , Animais , Duodeno/fisiopatologia , Masculino , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Álcool Feniletílico/farmacologia , Ratos
9.
PLoS One ; 10(5): e0123602, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951330

RESUMO

Palmitoylethanolamide (PEA), a peroxisome proliferator-activated receptor-α agonist, has been demonstrated to reduce blood pressure and kidney damage secondary to hypertension in spontaneously hypertensive rat (SHR). Currently, no information is available concerning the putative effect of PEA on modulating vascular tone. Here, we investigate the mechanisms underpinning PEA blood pressure lowering effect, exploring the contribution of epoxyeicosatrienoic acids, CYP-dependent arachidonic acid metabolites, as endothelium-derived hyperpolarizing factors (EDHF), and renin angiotensin system (RAS) modulation. To achieve this aim SHR and Wistar-Kyoto rats were treated with PEA (30 mg/kg/day) for five weeks. Functional evaluations on mesenteric bed were performed to analyze EDHF-mediated vasodilation. Moreover, mesenteric bed and carotid were harvested to measure CYP2C23 and CYP2J2, the key isoenzymes in the formation of epoxyeicosatrienoic acids, and the soluble epoxide hydrolase, which is responsible for their degradation in the corresponding diols. Effect of PEA on RAS modulation was investigated by analyzing angiotensin converting enzyme and angiotensin receptor 1 expression. Here, we showed that EDHF-mediated dilation in response to acetylcholine was increased in mesenteric beds of PEA-treated SHR. Western blot analysis revealed that the increase in CYP2C23 and CYP2J2 observed in SHR was significantly attenuated in mesenteric beds of PEA-treated SHR, but unchanged in the carotids. Interestingly, in both vascular tissues, PEA significantly decreased the soluble epoxide hydrolase protein level, accompanied by a reduced serum concentration of its metabolite 14-15 dihydroxyeicosatrienoic acid, implying a reduction in epoxyeicosatrienoic acid hydrolisis. Moreover, PEA treatment down-regulated angiotensin receptor 1 and angiotensin converting enzyme expression, indicating a reduction in angiotensin II-mediated effects. Consistently, a damping of the activation of angiotensin receptor 1 underlying pathways in mesenteric beds was shown in basal conditions in PEA-treated SHR. In conclusion, our data demonstrate the involvement of epoxyeicosatrienoic acids and renin angiotensin system in the blood pressure lowering effect of PEA.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Eicosanoides/metabolismo , Etanolaminas/administração & dosagem , Hipertensão/tratamento farmacológico , Ácidos Palmíticos/administração & dosagem , Sistema Renina-Angiotensina/efeitos dos fármacos , Amidas , Animais , Fatores Biológicos/metabolismo , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/metabolismo , Modelos Animais de Doenças , Etanolaminas/farmacologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Ácidos Palmíticos/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
10.
Toxicol Sci ; 147(1): 255-69, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26141388

RESUMO

Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) are persistent organic pollutants, associated with a range of adverse health effects, including interference with the immune system. In this study, we investigate the capability of NDL-PCBs 101, 153, and 180, 3 of the 6 NDL-PCBs defined as indicators, to impair the immune response in lipopolysaccharide (LPS)-activated J774A.1 and primary murine macrophages. Our results clearly demonstrate that the exposure of J774A.1 and primary macrophages to NDL-PCB 153 or 180 or all NDL-PCBs mixtures causes a significant reduction in LPS-induced cytokine/chemokine synthesis, such as tumor necrosis factor-α and interleukin-6, together with monocyte chemoattractant protein-1, involved in cell recruitment. Moreover, PCBs were found to suppress LPS-stimulated NO production, and to reduce cyclooxygenase-2 and inducible nitric oxide synthase expression in J774A.1 and primary macrophages. At mechanistic level, PCBs significantly counteract the LPS-driven toll-like receptor (TLR) 4 and CD14 upregulation, therefore inhibiting downstream nuclear factor-κB (NF-κB) activation in J774A.1. Furthermore, PCBs determine a significant loss of macrophage endocytic capacity, a prerequisite for efficient antigen presentation. Taken together, these data indicate that NDL-PCBs reduce macrophage responsiveness, particularly when they are combined at concentrations per se inactive, impairing the capability to orchestrate a proper immune response to an infectious stimulus, disrupting TLR4/NF-κB pathway.


Assuntos
Poluentes Ambientais/toxicidade , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Bifenilos Policlorados/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/biossíntese , Ciclo-Oxigenase 2/metabolismo , Citocinas/biossíntese , Endocitose/efeitos dos fármacos , Receptores de Lipopolissacarídeos/biossíntese , Receptores de Lipopolissacarídeos/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa