Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 19(3): 557-68, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20051010

RESUMO

The Mediterranean Sea is a two-basin system, with the boundary zone restricted to the Strait of Sicily and the narrow Strait of Messina. Two main population groups are recognized in the Mediterranean endemic seagrass Posidonia oceanica, corresponding to the Western and the Eastern basins. To address the nature of the East-West cleavage in P. oceanica, the main aims of this study were: (i) to define the genetic structure within the potential contact zone (i.e. the Strait of Sicily) and clarify the extent of gene flow between the two population groups, and (ii) to investigate the role of present water circulation patterns vs. past evolutionary events on the observed genetic pattern. To achieve these goals, we utilized SSR markers and we simulated, with respect to current regime, the possible present-day dispersal pattern of Posidonia floating fruits using 28-day numerical Lagrangian trajectories. The results obtained confirm the presence of the two main population groups, without any indices of reproductive isolation, with the break zone located at the level of the Southern tip of Calabria. The populations in the Strait of Sicily showed higher affinity with Western than with Eastern populations. This pattern of genetic structure probably reflects historical avenues of recolonization from relict glacial areas and past vicariance events, but seems to persist as a result of the low connectivity among populations via marine currents, as suggested by our dispersal simulation analysis.


Assuntos
Alismatales/genética , Fluxo Gênico , Genética Populacional , Simulação por Computador , DNA de Plantas/genética , Evolução Molecular , Genótipo , Geografia , Mar Mediterrâneo , Repetições de Microssatélites , Polimorfismo Genético , Análise de Componente Principal , Análise de Sequência de DNA , Movimentos da Água
2.
Plant Biol (Stuttg) ; 17(2): 505-11, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25262834

RESUMO

Posidonia oceanica is the most common, widespread and important monocotyledon seagrass in the Mediterranean Basin, and hosts a large biodiversity of species, including microorganisms with key roles in the marine environment. In this study, we ascertain the presence of a fungal endophyte in the roots of P. oceanica growing on different substrata (rock, sand and matte) in two Sicilian marine meadows. Staining techniques on root fragments and sections, in combination with microscope observations, were used to visualise the fungal presence and determine the percentage of fungal colonisation (FC) in this tissue. In root fragments, statistical analysis of the FC showed a higher mean in roots anchored on rock than on matte and sand. In root sections, an inter- and intracellular septate mycelium, producing intracellular microsclerotia, was detected from the rhizodermis to the vascular cylinder. Using isolation techniques, we obtained, from both sampling sites, sterile, slow-growing fungal colonies, dark in colour, with septate mycelium, belonging to the dark septate endophytes (DSEs). DNA sequencing of the internal transcribed spacer (ITS) region identified these colonies as Lulwoana sp. To our knowledge, this is the first report of Lulwoana sp. as DSE in roots of P. oceanica. Moreover, the highest fungal colonisation, detected in P. oceanica roots growing on rock, suggests that the presence of the DSE may help the host in several ways, particularly in capturing mineral nutrients through lytic activity.


Assuntos
Alismatales/microbiologia , Ascomicetos/fisiologia , Endófitos , Raízes de Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Itália , Mar Mediterrâneo , Dados de Sequência Molecular
3.
Mar Environ Res ; 87-88: 96-102, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23643476

RESUMO

The effects of different substratum typologies on Posidonia oceanica growth and morphology were estimated in four Sicilian meadows using Generalized and Linear Mixed Models combined with retrodating and biometric analyses. Substratum exerted a multiple effect, resulting in different biometric features for P. oceanica shoots settled on rock from those growing on sand and matte. On rock, values for growth rate, leaf length and shoot surface were lower than those on other substrata, with 42%, 23% and 32% the highest degree of difference respectively. The present study may have interesting methodological consequences for the comprehensive understanding of the causative variables potentially affecting meadows features and their health status. The importance of substratum in the prediction of likely biometry changes in P. oceanica meadows, means that knowledge of substratum type should receive due attention in the future to derive reliable estimates of meadow status.


Assuntos
Alismatales/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Rizoma/crescimento & desenvolvimento , Monitoramento Ambiental , Sedimentos Geológicos , Modelos Lineares , Modelos Biológicos , Sicília
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa