Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446131

RESUMO

Astragalus membranaceus (Fisch.) Bunge root is used as herbal medicine for its immunomodulating activities in Chinese medicine. Recently, beneficial properties of A. membranaceus on allergic diseases have been proposed. Here we investigated the role of a commercial extract of A. membranaceus, standardized to 16% polysaccharides, in regulating the immune-inflammatory response in vitro and in vivo and its therapeutic application in asthma. A. membranaceus extract inhibited prostaglandin E2 and leukotriene C4 production in stimulated J774 and peritoneal macrophages, respectively. The extract also reduced interlukin-1ß, tumor necrosis factor-α, and nitrite production, affecting inducible nitric oxide synthase expression. In vivo experiments confirmed the anti-inflammatory properties of A. membranaceus, as evident by a reduction in zymosan-induced peritoneal cellular infiltration and pro-inflammatory mediator production. The efficacy of A. membranaceus extract in modulating the immune response was confirmed in a model of allergic airway inflammation. Extracts improve lung function by inhibiting airway hyperresponsiveness, airway remodeling, and fibrosis. Its anti-asthmatic effects were further sustained by inhibition of the sensitization process, as indicated by a reduction of ovalbumin-induced IgE levels and the mounting of a Th2 immune response. In conclusion, our data demonstrate the anti-inflammatory properties of the commercial extract of A. membranaceus and its beneficial effects on asthma feature development.


Assuntos
Antiasmáticos , Asma , Animais , Camundongos , Astragalus propinquus , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/prevenção & controle , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Imunoglobulina E , Ovalbumina/toxicidade , Camundongos Endogâmicos BALB C
2.
J Med Chem ; 65(21): 14456-14480, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318728

RESUMO

The design of multitarget drugs represents a promising strategy in medicinal chemistry and seems particularly suitable for the discovery of anti-inflammatory drugs. Here, we describe the identification of an indoline-based compound inhibiting both 5-lipoxygenase (5-LOX) and soluble epoxide hydrolase (sEH). In silico analysis of an in-house library identified nine compounds as potential 5-LOX inhibitors. Enzymatic and cellular assays revealed the indoline derivative 43 as a notable 5-LOX inhibitor, guiding the design of new analogues. These compounds underwent extensive in vitro investigation revealing dual 5-LOX/sEH inhibitors, with 73 showing the most promising activity (IC50s of 0.41 ± 0.01 and 0.43 ± 0.10 µM for 5-LOX and sEH, respectively). When challenged in vivo in zymosan-induced peritonitis and experimental asthma in mice, compound 73 showed remarkable anti-inflammatory efficacy. These results pave the way for the rational design of 5-LOX/sEH dual inhibitors and for further investigation of their potential use as anti-inflammatory agents.


Assuntos
Anti-Inflamatórios , Epóxido Hidrolases , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Indóis/farmacologia , Indóis/uso terapêutico , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Inibidores de Lipoxigenase/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa