Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38931660

RESUMO

Thanks to the recent development of innovative instruments and software with high accuracy and resolution, 3D modelling provides useful insights in several sectors (from industrial metrology to cultural heritage). Moreover, the 3D reconstruction of objects of artistic interest is becoming mandatory, not only because of the risks to which works of art are increasingly exposed (e.g., wars and climatic disasters) but also because of the leading role that the virtual fruition of art is taking. In this work, we compared the performance of four 3D instruments based on different working principles and techniques (laser micro-profilometry, structured-light topography and the phase-shifting method) by measuring four samples of different sizes, dimensions and surface characteristics. We aimed to assess the capabilities and limitations of these instruments to verify their accuracy and the technical specifications given in the suppliers' data sheets. To this end, we calculated the point densities and extracted several profiles from the models to evaluate both their lateral (XY) and axial (Z) resolution. A comparison between the nominal resolution values and those calculated on samples representative of cultural artefacts was used to predict the performance of the instruments in real case studies. Overall, the purpose of this comparison is to provide a quantitative assessment of the performance of the instruments that allows for their correct application to works of art according to their specific characteristics.

2.
Opt Lett ; 45(17): 4948-4951, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32870899

RESUMO

Modulation transfer spectroscopy is used to demonstrate absolute frequency stabilization of an 8.6-µm-wavelength quantum cascade laser against a sub-Doppler absorption of the CHF3 molecule. The obtained spectral emission properties are thoroughly characterized through a self-referenced optical frequency comb, stabilized against either a GPS-disciplined Rb clock or a 1.54-µm Er-fiber laser locked to a high-finesse ultra-low-expansion optical cavity. Fractional long-term stability and accuracy at a level of 4×10-12 (at 100 s) and 3×10-10, respectively, are demonstrated, along with an emission linewidth as narrow as 10 kHz for observation times of 0.1 s.

3.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383699

RESUMO

We review the recent developments in precision ro-vibrational spectroscopy of buffer-gas-cooled neutral molecules, obtained using infrared frequency combs either as direct probe sources or as ultra-accurate optical rulers. In particular, we show how coherent broadband spectroscopy of complex molecules especially benefits from drastic simplification of the spectra brought about by cooling of internal temperatures. Moreover, cooling the translational motion allows longer light-molecule interaction times and hence reduced transit-time broadening effects, crucial for high-precision spectroscopy on simple molecules. In this respect, we report on the progress of absolute frequency metrology experiments with buffer-gas-cooled molecules, focusing on the advanced technologies that led to record measurements with acetylene. Finally, we briefly discuss the prospects for further improving the ultimate accuracy of the spectroscopic frequency measurement.


Assuntos
Acetileno/química , Modelos Teóricos , Espectrofotometria Infravermelho , Algoritmos
4.
Opt Lett ; 42(10): 1911-1914, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504757

RESUMO

We report on absolute measurements of saturated-absorption line-center frequencies of room-temperature trifluoromethane using a quantum cascade laser at 8.6 µm and the frequency modulation spectroscopy method. Absolute calibration of the laser frequency is obtained by direct comparison with a mid-infrared optical frequency comb synthesizer referenced to a radio-frequency Rb standard. Several sub-Doppler transitions falling in the υ5 vibrational band are investigated at around 1158.9 cm-1 with a fractional frequency precision of 8.6·10-12 at 1-s integration time, limited by the Rb-clock stability. The demonstrated frequency uncertainty of 6.6·10-11 is mainly limited by the reproducibility of the frequency measurements.

5.
J Chem Phys ; 143(23): 234202, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26696053

RESUMO

We report a high-precision spectroscopic study of room-temperature trifluoromethane around 8.6 µm, using a CW quantum cascade laser phase-locked to a mid-infrared optical frequency comb. This latter is generated by a nonlinear down-conversion process starting from a dual-branch Er:fiber laser and is stabilized against a GPS-disciplined rubidium clock. By tuning the comb repetition frequency, several transitions falling in the υ5 vibrational band are recorded with a frequency resolution of 20 kHz. Due to the very dense spectra, a special multiple-line fitting code, involving a Voigt profile, is developed for data analysis. The combination of the adopted experimental approach and survey procedure leads to fractional accuracy levels in the determination of line center frequencies, down to 2 × 10(-10). Line intensity factors, pressure broadening, and shifting parameters are also provided.

6.
Nat Commun ; 13(1): 7016, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385118

RESUMO

By reducing both the internal and translational temperature of any species down to a few kelvins, the buffer-gas-cooling (BGC) technique has the potential to dramatically improve the quality of ro-vibrational molecular spectra, thus offering unique opportunities for transition frequency measurements with unprecedented accuracy. However, the difficulty in integrating metrological-grade spectroscopic tools into bulky cryogenic equipment has hitherto prevented from approaching the kHz level even in the best cases. Here, we overcome this drawback by an original opto-mechanical scheme which, effectively coupling a Lamb-dip saturated-absorption cavity ring-down spectrometer to a BGC source, allows us to determine the absolute frequency of the acetylene (ν1 + ν3) R(1)e transition at 6561.0941 cm-1 with a fractional uncertainty as low as 6 × 10-12. By improving the previous record with buffer-gas-cooled molecules by one order of magnitude, our approach paves the way for a number of ultra-precise low-temperature spectroscopic studies, aimed at both fundamental Physics tests and optimized laser cooling strategies.

7.
Sensors (Basel) ; 8(10): 6549-6556, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-27873885

RESUMO

We report on our preliminary results in the realization and characterization of a porous silicon (PSi) resonant mirror (RM) for optical biosensing. We have numerically and experimentally studied the coupling between the electromagnetic field, totally reflected at the base of a high refractive index prism, and the optical modes of a PSi waveguide. This configuration is very sensitive to changes in the refractive index and/or in thickness of the sensor surface. Due to the high specific area of the PSi waveguide, very low DNA concentrations can be detected confirming that the RM could be a very sensitive and labelfree optical biosensor.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa