Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Microbiol ; 20(1): 181, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590939

RESUMO

BACKGROUND: Chikungunya (CHIKV), yellow fever (YFV) and Zika (ZIKV) viruses circulate in sylvatic transmission cycles in southeastern Senegal, where they share common hosts and vectors. All three viruses undergo periodic amplifications, during which they are detected in mosquitoes and sometimes in hosts. However, little is known about their spatio-temporal patterns in years in which they undergo concurrent amplification. The aim of this study was to describe the co-amplification of ZIKV, CHIKV, and YFV, and the daily dynamics of these arboviruses and theirs vectors within villages in southeastern Senegal. RESULTS: Mosquitoes were collected monthly from July to December 2015. Each evening, from 6 to 9 PM, landing collections were performed by teams of 3 persons working simultaneously in 70 sites situated in forest (canopy and ground), savannah, agriculture, barren, and village (indoor and outdoor) land covers. Collections within villages were continued until 6 AM. Mosquitoes were tested for virus infection by virus isolation and RT-PCR. Seventy-five mosquito pools comprising 10 mosquito species contained at least one virus. Ae. furcifer and Ae. luteocephalus were infected by all three viruses, Ae. taylori by YFV and ZIKV, and remaining seven species by only, only YFV or only ZIKV. No single mosquito pool contained more than one virus. CHIKV was the only virus detected in all land cover classes and was found in the greatest number of sampling sites (32.9%, n = 70). The proportion of sites in which more than one virus was detected was less than 6%. Ae. aegypti formosus, Ae. furcifer, Ae. luteocephalus, Ae. minutus, Ae. vittatus, and An. gambiae were found within villages. These vectors were mainly active around dusk but Ae. furcifer was collected until dawn. All viruses save ZIKV were detected indoors and outdoors, mainly around dusk. Virus positive pools were detected over 2, 3 and 4 months for YFV, CHIKV and ZIKV, respectively. CONCLUSION: Our data indicate that the distribution of different vector species and different arboviruses vary substantially between sites, suggesting that CHIKV, YFV, and ZIKV may have different transmission cycles in Southeastern Senegal.


Assuntos
Vírus Chikungunya/isolamento & purificação , Culicidae/virologia , Vírus da Febre Amarela/isolamento & purificação , Zika virus/isolamento & purificação , Animais , Vírus Chikungunya/genética , Culicidae/classificação , Feminino , Masculino , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Senegal , Fatores de Tempo , Vírus da Febre Amarela/genética , Zika virus/genética
2.
BMC Infect Dis ; 20(1): 371, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448116

RESUMO

BACKGROUND: Zika virus (ZIKV, genus Flavivirus, family Flaviviridae) is transmitted mainly by Aedes mosquitoes. This virus has become an emerging concern of global public health with recent epidemics associated to neurological complications in the pacific and America. ZIKV is the most frequently amplified arbovirus in southeastern Senegal. However, this virus and its adult vectors are undetectable during the dry season. The aim of this study was to investigate how ZIKV and its vectors are maintained locally during the dry season. METHODS: Soil, sand, and detritus contained in 1339 potential breeding sites (tree holes, rock holes, fruit husks, discarded containers, used tires) were collected in forest, savannah, barren and village land covers and flooded for eggs hatching. The emerging larvae were reared to adult, identified, and blood fed for F1 production. The F0 and F1 adults were identified and tested for ZIKV by Reverse Transcriptase-Real time Polymerase Chain Reaction. RESULTS: A total of 1016 specimens, including 13 Aedes species, emerged in samples collected in the land covers and breeding sites investigated. Ae. aegypti was the dominant species representing 56.6% of this fauna with a high plasticity. Ae. furcifer and Ae. luteocephalus were found in forest tree holes, Ae. taylori in forest and village tree holes, Ae. vittatus in rock holes. ZIKV was detected from 4 out of the 82 mosquito pools tested. Positive pools included Ae. bromeliae (2 pools), Ae. unilineatus (1 pool), and Ae. vittatus (1 pool), indicating that the virus is maintained in these Aedes eggs during the dry season. CONCLUSION: Our investigation identified breeding sites types and land cover classes where several ZIKV vectors are maintained, and their maintenance rates during the dry season in southeastern Senegal. The maintenance of the virus in these vectors in nature could explain its early amplification at the start of the rainy season in this area.


Assuntos
Aedes/virologia , Secas , Mosquitos Vetores/fisiologia , Estações do Ano , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Zika virus/genética , Aedes/classificação , Aedes/fisiologia , Animais , Arbovírus/genética , Feminino , Florestas , Larva , Masculino , RNA Viral/genética , Chuva , Reprodução , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Areia/virologia , Senegal/epidemiologia , Microbiologia do Solo , Árvores/virologia , Infecção por Zika virus/virologia
3.
J Infect Dis ; 214(suppl 5): S459-S465, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27920174

RESUMO

Chikungunya virus (CHIKV) is primarily spread by the Aedes aegypti and Aedes albopictus mosquito vectors. Because there is no licensed vaccine for CHIKV, identifying ways to reduce or eliminate mosquito populations is the most effective strategy to immediately halt transmission to man. Strategies to assess the entomological risk and to control the vector are absolutely crucial to demolishing the rise of CHIKV. This review provides perspectives in entomological risk assessment and vector control, challenges for both, and gaps in knowledge that need to be addressed through rigorous research and multidisciplinary collaborations.


Assuntos
Aedes/fisiologia , Aedes/virologia , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/transmissão , Controle de Mosquitos , Mosquitos Vetores/fisiologia , Animais , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Surtos de Doenças , Feminino , Masculino , Mosquitos Vetores/virologia , Medição de Risco
4.
Nucleic Acids Res ; 42(3): 1721-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24214995

RESUMO

Circular chromosomes can form dimers during replication and failure to resolve those into monomers prevents chromosome segregation, which leads to cell death. Dimer resolution is catalysed by a highly conserved site-specific recombination system, called XerCD-dif in Escherichia coli. Recombination is activated by the DNA translocase FtsK, which is associated with the division septum, and is thought to contribute to the assembly of the XerCD-dif synapse. In our study, direct observation of the assembly of the XerCD-dif synapse, which had previously eluded other methods, was made possible by the use of Tethered Particle Motion, a single molecule approach. We show that XerC, XerD and two dif sites suffice for the assembly of XerCD-dif synapses in absence of FtsK, but lead to inactive XerCD-dif synapses. We also show that the presence of the γ domain of FtsK increases the rate of synapse formation and convert them into active synapses where recombination occurs. Our results represent the first direct observation of the formation of the XerCD-dif recombination synapse and its activation by FtsK.


Assuntos
Proteínas de Escherichia coli/metabolismo , Integrases/metabolismo , Proteínas de Membrana/metabolismo , Recombinação Genética , Proteínas de Escherichia coli/química , Cinética , Proteínas de Membrana/química , Movimento (Física) , Estrutura Terciária de Proteína
5.
BMC Infect Dis ; 15: 492, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26527535

RESUMO

BACKGROUND: Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) is an emerging virus of medical importance maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Serological evidence and virus isolations have demonstrated widespread distribution of the virus in Senegal. Several mosquito species have been found naturally infected by ZIKV but little is known about their vector competence. METHODS: We assessed the vector competence of Ae. aegypti from Kedougou and Dakar, Ae. unilineatus, Ae. vittatus and Ae. luteocephalus from Kedougou in Senegal for 6 ZIKV strains using experimental oral infection. Fully engorged female mosquitoes were maintained in an environmental chamber set at 27 ± 1 °C and 80 ± 5% Relative humidity. At day 5, 10 and 15 days post infection (dpi), individual mosquito saliva, legs/wings and bodies were tested for the presence of ZIKV genome using real time RT-PCR to estimate the infection, dissemination, and transmission rates. RESULTS: All the species tested were infected by all viral strains but only Ae. vittatus and Ae. luteocephalus were potentially capable of transmitting ZIKV after 15 dpi with 20 and 50% of mosquitoes, respectively, delivering epidemic (HD 78788) and prototype (MR 766) ZIKV strains in saliva. CONCLUSION: All the species tested here were susceptible to oral infection of ZIKV but only a low proportion of Ae. vittatus and Ae. luteocephalus had the viral genome in their saliva and thus the potential to transmit the virus. Further investigations are needed on the vector competence of other species associated with ZIKV for better understanding of the ecology and epidemiology of this virus in Senegal.


Assuntos
Aedes/virologia , Insetos Vetores/virologia , Infecção por Zika virus/transmissão , Zika virus , Animais , Feminino , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Saliva/virologia , Senegal , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/virologia
6.
J Med Entomol ; 61(1): 222-232, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37703355

RESUMO

Senegal has experienced periodic epidemics of dengue in urban areas with increased incidence in recent years. However, few data are available on the local ecology of the epidemic vectors. In October 2021, a dengue outbreak was reported in northern Senegal to the Institute Pasteur de Dakar. Entomologic investigations then were undertaken to identify the areas at risk of transmission and to identify the vector(s). Adult mosquitoes were collected indoors and outdoors at selected households, while containers with water were inspected for mosquito larvae. All the Aedes aegypti (L.) collected were tested for dengue virus NS1 protein using a rapid diagnostic test (RDT), and positive samples were confirmed by real-time RT-PCR. The qRT-PCR positive samples were subjected to whole genome sequencing using Nanopore technology. The majority of the larvae-positive containers (83.1%) were used for water storage. The Breteau and Container indices exceeded the WHO-recommended thresholds for the risk of dengue virus transmission except at 2 localities. Ae. aegypti, the only reputed dengue vector, was collected resting indoors as well as outdoors and biting during the day and night. The NS1 protein was detected in 22 mosquito pools, including one pool of females emerging from field-collected larvae. All NS1-positive results were confirmed by RT-PCR. Virus serotyping showed that the outbreak was caused by DENV-1. This study demonstrates the need for continuous control of adult and aquatic stages of Ae. aegypti to prevent future dengue epidemics in Senegal. RDTs appear to be a promising tool for dengue diagnostics and surveillance.


Assuntos
Aedes , Vírus da Dengue , Dengue , Feminino , Animais , Dengue/epidemiologia , Vírus da Dengue/genética , Mosquitos Vetores , Senegal/epidemiologia , Surtos de Doenças , Larva , Água
7.
J Virol Methods ; 311: 114638, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328081

RESUMO

The genus Flavivirus in the Flaviridae contains arthropod born viruses associated with high public health burdens like Zika, Dengue or Yellow fever. Saboya virus (SABV) is an understudied flavivirus grouping in the same genetic sub-group as Yellow Fever Virus (YFV) together with Sepik virus (SEPV) and Wesselbron virus (WSLV). Flavivirus infections are characterized by non-specific clinical presentations resulting in a high risk of misdiagnosis. SABV virus has been shown to circulate in the Sahelian zone and in central Africa. To study this virus we a qRT-PCR system based on TaqMan chemistry was developed to allow rapid and specific detection of SABV. The SABV assay was evaluated on available SABV isolates and others flaviviruses (DENV, ZIKV, YFV, WNV, KEDV). The system reliably detected all used SABV strains without cross amplification of other flaviviruses. In term of sensitivity the SABV assay detect up to 40.25 copies of SABV standard DNA molecule per ul. This system can be easily added to the available panel of arboviruses detection assays as a reliable tool to study virus prevalence in human, vertebrate and insect-vector samples.


Assuntos
Vírus da Dengue , Flavivirus , Febre Amarela , Infecção por Zika virus , Zika virus , Humanos , Flavivirus/genética , Febre Amarela/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Vírus da Febre Amarela/genética
8.
Biosensors (Basel) ; 13(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38131795

RESUMO

Arthropod-borne diseases currently constitute a source of major health concerns worldwide. They account for about 50% of global infectious diseases and cause nearly 700,000 deaths every year. Their rapid increase and spread constitute a huge challenge for public health, highlighting the need for early detection during epidemics, to curtail the virus spread, and to enhance outbreak management. Here, we compared a standard quantitative polymerase chain reaction (RT-qPCR) and a direct RT-qPCR assay for the detection of Zika (ZIKV), Chikungunya (CHIKV), and Rift Valley Fever (RVFV) viruses from experimentally infected-mosquitoes. The direct RT-qPCR could be completed within 1.5 h and required 1 µL of viral supernatant from homogenized mosquito body pools. Results showed that the direct RT-qPCR can detect 85.71%, 89%, and 100% of CHIKV, RVFV, and ZIKV samples by direct amplifications compared to the standard method. The use of 1:10 diluted supernatant is suggested for CHIKV and RVFV direct RT-qPCR. Despite a slight drop in sensitivity for direct PCR, our technique is more affordable, less time-consuming, and provides a better option for qualitative field diagnosis during outbreak management. It represents an alternative when extraction and purification steps are not possible because of insufficient sample volume or biosecurity issues.


Assuntos
Arbovírus , Febre de Chikungunya , Vírus Chikungunya , Culicidae , Vírus da Dengue , Infecção por Zika virus , Zika virus , Animais , Infecção por Zika virus/diagnóstico , Zika virus/genética , Vírus Chikungunya/genética , Febre de Chikungunya/diagnóstico , Febre de Chikungunya/epidemiologia
9.
Diagnostics (Basel) ; 13(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36766567

RESUMO

Zika virus (ZIKV) diagnostics are crucial for proper antenatal and postnatal care and also for surveillance and serosurvey studies. Since the viremia during ZIKV infection is fleeting, serological testing is highly valuable to inform diagnosis. However, current serology tests using whole virus antigens frequently suffer from cross reactivity issues, delays, and technical complexity, especially in low and middle income countries (LMICs) and endemic countries. Here, we describe an indirect ELISA to detect specific IgG antibodies using the ZIKV envelope domain III (EDIII) protein expressed in Drosophila S2 cells as an immunogen. Using a total of 367 clinical samples, we showed that the EDIII-ELISA was able to detect IgG antibodies against ZIKV with high sensitivity of 100.0% and specificity of 94.7% when compared to plaque reduction neutralization tests (PRNTs) as the gold standard and using 0.208 as the cut-off OD value. These results show the usefulness of the recombinant envelope domain III as an alternative to standard whole virus proteins for ZIKV diagnostics as it improves the sensitivity and specificity of IgG ELISA assay when used as an immunogen. This method should, therefore, be extended to serological diagnostic techniques for other members of the flavivirus genus and for use in IgM diagnostic testing.

10.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112887

RESUMO

In Senegal, the burden of dengue is increasing and expanding. As case management and traditional diagnostic techniques can be difficult to implement, rapid diagnostic tests (RDTs) deployed at point of care are ideal for investigating active outbreaks. The aim of this study was to evaluate the diagnostic performance of the Dengue NS1 and Dengue IgM/IgG RDTs on the serum/plasma samples in a laboratory setting and in the field. During laboratory evaluation, performance of the NS1 RDT was assessed using NS1 ELISA as the gold standard. Sensitivity and specificity were 88% [75-95%] and 100% [97-100%], respectively. Performance of the IgM/IG RDT was assessed using the IgM Antibody Capture (MAC) ELISA, indirect IgG, and PRNT as gold standards. The IgM and IgG test lines respectively displayed sensitivities of 94% [83-99%] and 70% [59-79%] and specificities of 91% [84-95%] and 91% [79-98%]. In the field, the Dengue NS1 RDT sensitivity and specificity was 82% [60-95%] and 75% [53-90%], respectively. The IgM and IgG test lines displayed sensitivities of 86% [42-100%] and 78% [64-88%], specificities of 85% [76-92%] and 55% [36-73%], respectively. These results demonstrate that RDTs are ideal for use in a context of high prevalence or outbreak setting and can be implemented in the absence of a confirmatory test for acute and convalescent patients.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/diagnóstico , Dengue/epidemiologia , Testes de Diagnóstico Rápido , Senegal/epidemiologia , Sensibilidade e Especificidade , Imunoglobulina M , Ensaio de Imunoadsorção Enzimática/métodos , Imunoglobulina G , Anticorpos Antivirais , Proteínas não Estruturais Virais
11.
Diagn Microbiol Infect Dis ; 105(4): 115903, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805620

RESUMO

Management of the COVID-19 pandemic relies on molecular diagnostic methods supported by serological tools. Herein, we developed S-RBD- and N- based ELISA assays useful for infection rate surveillance as well as the follow-up of acquired protective immunity against SARS-CoV-2. ELISA assays were optimized using COVID-19 Tunisian patients' sera and prepandemic controls. Assays were further validated in 3 African countries with variable endemic settings. The receiver operating curve was used to evaluate the assay performances. The N- and S-RBD-based ELISA assays performances, in Tunisia, were very high (AUC: 0.966 and 0.98, respectively, p < 0.0001). Cross-validation analysis showed similar performances in different settings. Cross-reactivity, with malaria infection, against viral antigens, was noticed. In head-to-head comparisons with different commercial assays, the developed assays showed high agreement. This study demonstrates, the added value of the developed serological assays in low-income countries, particularly in ethnically diverse populations with variable exposure to local endemic infectious diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Ensaio de Imunoadsorção Enzimática , Tunísia/epidemiologia , Anticorpos Antivirais
12.
Microorganisms ; 10(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35336125

RESUMO

Wesselsbron is a neglected, mosquito-borne zoonotic disease endemic to Africa. The virus is mainly transmitted by the mosquitoes of the Aedes genus and primarily affects domestic livestock species with teratogenic effects but can jump to humans. Although no major outbreak or fatal case in humans has been reported as yet worldwide, a total of 31 acute human cases of Wesselsbron infection have been previously described since its first isolation in 1955. However, most of these cases were reported from Sub-Saharan Africa where resources are limited and a lack of diagnostic means exists. We describe here two molecular diagnostic tools suitable for Wesselsbron virus detection. The newly established reverse transcription-quantitative polymerase chain reaction and reverse-transcription-recombinase polymerase amplification assays are highly specific and repeatable, and exhibit good agreement with the reference assay on the samples tested. The validation on clinical and veterinary samples shows that they can be accurately used for Wesselsbron virus detection in public health activities and the veterinary field. Considering the increasing extension of Aedes species worldwide, these new assays could be useful not only in laboratory studies for Wesselsbron virus, but also in routine surveillance activities for zoonotic arboviruses and could be applied in well-equipped central laboratories or in remote areas in Africa, regarding the reverse-transcription-recombinase polymerase amplification assay.

13.
PLoS Negl Trop Dis ; 16(1): e0010075, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007285

RESUMO

BACKGROUND: West Nile virus is a mosquito-borne flavivirus which has been posing continuous challenges to public health worldwide due to the identification of new lineages and clades and its ability to invade and establish in an increasing number of countries. Its current distribution, genetic variability, ecology, and epidemiological pattern in the African continent are only partially known despite the general consensus on the urgency to obtain such information for quantifying the actual disease burden in Africa other than to predict future threats at global scale. METHODOLOGY AND PRINCIPAL FINDINGS: References were searched in PubMed and Google Scholar electronic databases on January 21, 2020, using selected keywords, without language and date restriction. Additional manual searches of reference list were carried out. Further references have been later added accordingly to experts' opinion. We included 153 scientific papers published between 1940 and 2021. This review highlights: (i) the co-circulation of WNV-lineages 1, 2, and 8 in the African continent; (ii) the presence of diverse WNV competent vectors in Africa, mainly belonging to the Culex genus; (iii) the lack of vector competence studies for several other mosquito species found naturally infected with WNV in Africa; (iv) the need of more competence studies to be addressed on ticks; (iv) evidence of circulation of WNV among humans, animals and vectors in at least 28 Countries; (v) the lack of knowledge on the epidemiological situation of WNV for 19 Countries and (vii) the importance of carrying out specific serological surveys in order to avoid possible bias on WNV circulation in Africa. CONCLUSIONS: This study provides the state of art on WNV investigation carried out in Africa, highlighting several knowledge gaps regarding i) the current WNV distribution and genetic diversity, ii) its ecology and transmission chains including the role of different arthropods and vertebrate species as competent reservoirs, and iii) the real disease burden for humans and animals. This review highlights the needs for further research and coordinated surveillance efforts on WNV in Africa.


Assuntos
Aedes/virologia , Culex/virologia , Carrapatos/virologia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , África/epidemiologia , Animais , Humanos , Controle de Insetos/métodos , Mosquitos Vetores/virologia , Febre do Nilo Ocidental/patologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação
14.
Trop Med Infect Dis ; 7(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36548675

RESUMO

Senegal is hyperendemic for dengue. Since 2017, outbreaks have been noticed annually in many regions around the country, marked by the co-circulation of DENV1-3. On 8 October 2021, a Dengue virus outbreak in the Rosso health post (sentinel site of the syndromic surveillance network) located in the north of the country was notified to the WHO Collaborating Center for arboviruses and hemorrhagic fever viruses at Institut Pasteur de Dakar. A multidisciplinary team was then sent for epidemiological and virologic investigations. This study describes the results from investigations during an outbreak in Senegal using a rapid diagnostic test (RDT) for the combined detection of dengue virus non-structural protein 1 (NS1) and IgM/IgG. For confirmation, samples were also tested by real-time RT-PCR and IgM ELISA at the reference lab in Dakar. qRT-PCR positive samples were subjected to whole genome sequencing using nanopore technology. Virologic analysis scored 102 positives cases (RT-PCR, NS1 antigen detection and/or IgM) out of 173 enrolled patients; interestingly, virus serotyping showed that the outbreak was caused by the DENV-1, a serotype different from DENV-2 involved during the outbreak in Rosso three years earlier, indicating a serotype replacement. Nearly all field-tested NS1 positives samples were confirmed by qRT-PCR with a concordance of 92.3%. Whole genome sequencing and phylogenetic analysis of strains suggested a re-introduction in Rosso of a DENV-1 strain different to the one responsible for the outbreak in the Louga area five years before. Findings call for improved dengue virus surveillance in Senegal, with a wide deployment of DENV antigenic tests, which allow easy on-site diagnosis of suspected cases and early detection of outbreaks. This work highlights the need for continuous monitoring of circulating serotypes which is crucial for a better understanding of viral epidemiology around the country.

15.
Am J Trop Med Hyg ; 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35344930

RESUMO

Aedes aegypti plays an important role in the transmission of several arboviruses of medical importance. The availability of information on the blood-feeding preferences of mosquito vectors is a critical step in the understanding of the transmission of human pathogens and implementation of control strategies. In Senegal, no data currently exist on the feeding pattern of Ae. aegypti in urban areas. To fill this gap, Ae. aegypti blood-fed females were collected in five localities by aspiration and using BG Sentinel 2 traps. Collections were carried out monthly between July and November 2019 inside and outside human dwellings. The origin of the blood meal of Ae. aegypti females were identified by an ELISA technique. A total of 1,710 blood-engorged females were examined and showed that Ae. aegypti preferentially fed on human with 78.6% of the identified blood meals. The other blood meals were from animals including dog, cat, horse, cattle, sheep, and rat. This is the first report on the feeding behavior of Ae. aegypti in urban settings in West Africa. It demonstrated that this species is highly anthropophilic.

16.
Transbound Emerg Dis ; 69(5): e1350-e1364, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35124899

RESUMO

Despite the establishment of Rabies surveillance in animals and humans since 2008, there is a lack of data on its circulation, dynamic of transmission and real burden in Senegal. To better understand the molecular epidemiology of rabies virus in Senegal, we investigated the genetic diversity of 18 new characterized Senegalese rabies virus sequences collected over 14 years, including a honey-badger-related isolate. Phylogeographic analyses demonstrated that the Senegalese isolates belong to a monophyletic cluster into the Africa-2 clade and supported two RABV introductions in Senegal from West-African neighbour countries, 36-40 years ago. Our study is noteworthy for reporting on the first characterization of an African honey-badger-related rabies virus that did not have the N-glycosylation site NKT at position 338-G of the glycoprotein. The identified amino acid polymorphisms found in the Senegalese rabies virus sequences are worthy of further investigation. Although a strong multidisciplinary stepwise cooperation is important for the successful elimination of Rabies in dog populations in Senegal by 2030, the establishment of surveillance in wildlife could be necessary to avoid future re-introductions into domestic hosts.


Assuntos
Doenças do Cão , Mel , Mustelidae , Vírus da Raiva , Raiva , Aminoácidos/genética , Animais , Doenças do Cão/epidemiologia , Cães , Glicoproteínas/genética , Humanos , Filogenia , Raiva/epidemiologia , Raiva/veterinária , Vírus da Raiva/genética , Senegal/epidemiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-36554793

RESUMO

Dengue virus (DENV) was detected in Senegal in 1979 for the first time. Since 2017, unprecedented frequent outbreaks of DENV were noticed yearly. In this context, epidemiological and molecular evolution data are paramount to decipher the virus diffusion route. In the current study, we focused on a dengue outbreak which occurred in Senegal in 2018 in the context of a large religious gathering with 263 confirmed DENV cases out of 832 collected samples, including 25 life-threatening cases and 2 deaths. It was characterized by a co-circulation of dengue serotypes 1 and 3. Phylogenetic analysis based on the E gene revealed that the main detected serotype in Touba was DENV-3 and belonged to Genotype III. Bayesian phylogeographic analysis was performed and suggested one viral introduction around 2017.07 (95% HPD = 2016.61-2017.57) followed by cryptic circulation before the identification of the first case on 1 October 2018. DENV-3 strains are phylogenetically related, with strong phylogenetic links between strains retrieved from Burkina Faso and other West African countries. These phylogenetic data substantiate epidemiological data of the origin of DENV-3 and its spread between African countries and subsequent diffusion after religious mass events. The study also highlighted the usefulness of a mobile laboratory during the outbreak response, allowing rapid diagnosis and resulting in improved patient management.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/epidemiologia , Vírus da Dengue/genética , Sorogrupo , Filogenia , Senegal/epidemiologia , Teorema de Bayes , Surtos de Doenças , Genótipo , Burkina Faso
18.
EClinicalMedicine ; 49: 101478, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35747186

RESUMO

Background: Development and evaluation of diagnostics for diseases of epidemic potential are often funded during epidemics, but not afterwards, leaving countries unprepared for the next epidemic. United Nations Children's Emergency Fund (UNICEF) partnered with the United States Agency for International Development (USAID) to address this important gap by investing in an advance purchase commitment (APC) mechanism to accelerate the development and evaluation of Zika rapid diagnostic tests (RDTs) for case detection and surveillance. This paper describes the performance evaluation of five Zika RDTs eligible for procurement. Methods: A network of European Union-funded ZikaPLAN sites in Africa, Asia, Latin America with access to relevant serum specimens were selected to evaluate RDTs developed for the UNICEF APC mechanism. A standardised protocol and evaluation panels were developed and a call for specimens for the evaluation panels issued to different sites. Each site contributed specimens to the evaluation from their biobank. Data were collated, analysed and presented to the UNICEF Procurement Review Group for review. Findings: Three RDTs met the criteria for UNICEF procurement of sensitivity and specificity of 85% against a refence standard. The sensitivity/specificity of the ChemBio anti-Zika Virus (ZIKV) immunoglobulin M (IgM) test was 86.4 %/86.7% and the ChemBio ZCD system for anti-ZIKV IgM was 79.0%/97.1%, anti-dengue virus (DENV) IgM 90.0%/89.2%, anti-Chikungunya virus (CHIKV) IgM 90.6%/97.2%. The sensitivity/specificity of the SD Biosensor anti-ZIKV IgM was 96.8 %/90.8%, anti-DENV IgM 71.8%/83.5%, the DENV nonstructural protein 1 (NS1) glycoprotein 90.0%/90.2%, anti- yellow fever virus (YFV) IgM 84.6%/92.4%, anti-CHIKV IgM 86.3%/97.5%. Interpretation: Three RDTs fulfilled the performance thresholds set by WHO and were eligible for UNICEF procurement. These tests will improve the diagnosis of ZIKV and other arboviral infections as well as providing countries with better tools for surveillance and response to future epidemics. Funding: This work was supported by the USAID grant GHA-G-00-07-00007 and ZikaPLAN (European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 734584).

19.
Sci Rep ; 12(1): 17878, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284151

RESUMO

The Rapid proliferation of traditional gold mining sites in the Kedougou region has led to massive migration of people from neighbouring West African countries and the establishment of several small villages where poor hygiene and sanitation conditions exist. In this context, a Hepatitis E virus outbreak was reported in Kedougou in 2014 with several cases among the traditional mining workers. Herein, we described epidemiological and laboratory data collected during the outbreak's investigation from February 2012 to November 2014. Any suspected, contact or probable case was investigated, clinical and epidemiological data were collected. In our study, sera were collected and tested for viral RNA and anti-Hepatitis E virus (HEV) IgM. Archived serum samples from Kedougou were retrospectively screened by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). A total of 65 water samples collected from ponds and wells surrounding gold panners' sites and habitats and 75 tissues samples from rats captured in the environment of traditional gold mining sites were also tested. A total of 1617 sera were collected from 698 suspected cases, 862 contacts and 57 persons with missing information. The median age was 20 (1-88 years-old) and the sex ratio was 1.72. An overall rate of 64.62% (1045/1617) of these patients tested positive for HEV with a high case fatality rate in pregnant women. All water samples and animal tissues tested negative for HEV. Our data help not only determining of the beginning of the HEV outbreak to March 2012, but also identifying risk factors associated to its emergence. However, there is a need to implement routine diagnosis, surveillance and training of health personnel in order to reduce mortality especially among pregnant women. In addition, further studies are needed to identify the virus reservoir and environmental risk factors for HEV in the Kedougou region.


Assuntos
Vírus da Hepatite E , Hepatite E , Feminino , Humanos , Gravidez , Ratos , Animais , RNA Viral/genética , Estudos Retrospectivos , Senegal , Vírus da Hepatite E/genética , Anticorpos Anti-Hepatite , Imunoglobulina M , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Ouro , Água
20.
Sci Rep ; 12(1): 12962, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902675

RESUMO

Early predictions forecasted large numbers of severe acute respiratory syndrome coronavirus (SARS-CoV-2) cases and associated deaths in Africa. To date, Africa has been relatively spared. Various hypotheses were postulated to explain the lower than anticipated impact on public health in Africa. However, the contribution of pre-existing immunity is yet to be investigated. In this study, the presence of antibodies against SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in pre-pandemic samples from Africa, Europe, South and North America was examined by ELISA. The protective efficacy of N specific antibodies isolated from Central African donors was tested by in vitro neutralization and in a mouse model of SARS-CoV-2 infection. Antibodies against SARS-CoV-2 S and N proteins were rare in all populations except in Gabon and Senegal where N specific antibodies were prevalent. However, these antibodies failed to neutralize the virus either in vitro or in vivo. Overall, this study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic. However, this pre-existing humoral immunity does not impact viral fitness in rodents suggesting that other human immune defense mechanisms could be involved. In Africa, seroprevalence studies using the N protein are over-estimating SARS-CoV-2 circulation.


Assuntos
COVID-19 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/epidemiologia , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Senegal , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa