Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Antimicrob Chemother ; 76(8): 2079-2087, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34021751

RESUMO

OBJECTIVES: To evaluate Plasmodium malariae susceptibility to current and lead candidate antimalarial drugs. METHODS: We conducted cross-sectional screening and detection of all Plasmodium species malaria cases, which were nested within a longitudinal prospective study, and an ex vivo assessment of efficacy of a panel of antimalarials against P. malariae and Plasmodium falciparum, both PCR-confirmed mono-infections. Reference compounds tested included chloroquine, lumefantrine, artemether and piperaquine, while candidate antimalarials included the imidazolopiperazine GNF179, a close analogue of KAF156, and the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. RESULTS: We report a high frequency (3%-15%) of P. malariae infections with a significant reduction in ex vivo susceptibility to chloroquine, lumefantrine and artemether, which are the current frontline drugs against P. malariae infections. Unlike these compounds, potent inhibition of P. malariae and P. falciparum was observed with piperaquine exposure. Furthermore, we evaluated advanced lead antimalarial compounds. In this regard, we identified strong inhibition of P. malariae using GNF179, a close analogue of KAF156 imidazolopiperazines, which is a novel class of antimalarial drug currently in clinical Phase IIb testing. Finally, in addition to GNF179, we demonstrated that the Plasmodium PI4K-specific inhibitor KDU691 is highly inhibitory against P. malariae and P. falciparum. CONCLUSIONS: Our data indicated that chloroquine, lumefantrine and artemether may not be suitable for the treatment of P. malariae infections and the potential of piperaquine, as well as new antimalarials imidazolopiperazines and PI4K-specific inhibitor, for P. malariae cure.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Estudos Transversais , Humanos , Malária Falciparum/tratamento farmacológico , Mali , Plasmodium falciparum , Plasmodium malariae , Estudos Prospectivos
2.
Malar J ; 19(1): 137, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252774

RESUMO

BACKGROUND: Seasonal malaria chemoprevention (SMC) is a new strategy to prevent malaria in children under 5 years old. It has been recommended by the World Health Organization since 2012 in malaria-endemic areas with seasonal transmission. This study aimed to assess the changes in malaria indicators through two consecutive years of SMC routine implementation in children under 5 years old in Dangassa, where malaria is endemic with a long and high transmission season. METHODS: From 2012 to 2016, a cohort study was conducted in Dangassa village. The study team based in the village followed all malaria clinical cases in children under 5 years old at the community health centre. During the study, SMC was routinely implemented in collaboration with the National Malaria Control Programme. The Cox regression model was used in order to compare malaria risk during the study. RESULTS: The Cox regression model showed a significant reduction in malaria clinical incidence, both in 2015 (HR = 0.27 (0.18-0.40), 95% CI) and in 2016 (HR = 0.23 (0.15-0.35), 95% CI) of SMC implementation compared to October 2013. Gametocyte and fever prevalence was lower between September and October during SMC implementation (2015 and 2016) compared to the same period before SMC implementation (2013-2014). A slight increase of malaria incidence was observed in December at the end of SMC implementation. CONCLUSION: SMC has significantly reduced both malaria incidence and gametocyte prevalence and improved haemoglobin levels in children under 5 years old after 2 years of routine implementation.


Assuntos
Antimaláricos/administração & dosagem , Quimioprevenção/estatística & dados numéricos , Implementação de Plano de Saúde , Malária/prevenção & controle , Estações do Ano , Pré-Escolar , Estudos de Coortes , Doenças Endêmicas/prevenção & controle , Humanos , Lactente , Malária/epidemiologia , Mali/epidemiologia , Prevalência , Análise de Regressão , Fatores de Risco , Organização Mundial da Saúde
3.
Malar J ; 18(1): 361, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718631

RESUMO

BACKGROUND: Drug resistance is one of the greatest challenges of malaria control programme in Mali. Recent advances in next-generation sequencing (NGS) technologies provide new and effective ways of tracking drug-resistant malaria parasites in Africa. The diversity and the prevalence of Plasmodium falciparum drug-resistance molecular markers were assessed in Dangassa and Nioro-du-Sahel in Mali, two sites with distinct malaria transmission patterns. Dangassa has an intense seasonal malaria transmission, whereas Nioro-du-Sahel has an unstable and short seasonal malaria transmission. METHODS: Up to 270 dried blood spot samples (214 in Dangassa and 56 in Nioro-du-Sahel) were collected from P. falciparum positive patients in 2016. Samples were analysed on the Agena MassARRAY® iPLEX platform. Specific codons were targeted in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps, Pfarps10, Pfferredoxin, Pfexonuclease and Pfmdr2 genes. The Sanger's 101-SNPs-barcode method was used to assess the genetic diversity of P. falciparum and to determine the parasite species. RESULTS: The Pfcrt_76T chloroquine-resistance genotype was found at a rate of 64.4% in Dangassa and 45.2% in Nioro-du-Sahel (p = 0.025). The Pfdhfr_51I-59R-108N pyrimethamine-resistance genotype was 14.1% and 19.6%, respectively in Dangassa and Nioro-du-Sahel. Mutations in the Pfdhps_S436-A437-K540-A581-613A sulfadoxine-resistance gene was significantly more prevalent in Dangassa as compared to Nioro-du-Sahel (p = 0.035). Up to 17.8% of the isolates from Dangassa vs 7% from Nioro-du-Sahel harboured at least two codon substitutions in this haplotype. The amodiaquine-resistance Pfmdr1_N86Y mutation was identified in only three samples (two in Dangassa and one in Nioro-du-Sahel). The lumefantrine-reduced susceptibility Pfmdr1_Y184F mutation was found in 39.9% and 48.2% of samples in Dangassa and Nioro-du-Sahel, respectively. One piperaquine-resistance Exo_E415G mutation was found in Dangassa, while no artemisinin resistance genetic-background were identified. A high P. falciparum diversity was observed, but no clear genetic aggregation was found at either study sites. Higher multiplicity of infection was observed in Dangassa with both COIL (p = 0.04) and Real McCOIL (p = 0.02) methods relative to Nioro-du-Sahel. CONCLUSIONS: This study reveals high prevalence of chloroquine and pyrimethamine-resistance markers as well as high codon substitution rate in the sulfadoxine-resistance gene. High genetic diversity of P. falciparum was observed. These observations suggest that the use of artemisinins is relevant in both Dangassa and Nioro-du-Sahel.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Variação Genética , Plasmodium falciparum/genética , Biomarcadores/análise , Mali , Plasmodium falciparum/efeitos dos fármacos
4.
Malar J ; 15(1): 482, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27655345

RESUMO

BACKGROUND: Sickle-cell trait (HbAS) reduces falciparum malaria risk and suppresses parasitaemia. Although several candidate mechanisms have been proposed, their epidemiological, clinical and experimental correlates have not been adequately explained. To explore the basis for generally lower parasitaemias and delayed malaria episodes in children with HbAS, it is hypothesized here that their spleen-dependent removal of ring-infected red blood cells (RBCs) is more efficient than in children with normal haemoglobin A (HbAA). METHODS: The mechanical splenic retention of Plasmodium falciparum-infected RBCs from subjects with HbAS or HbAA was investigated using two physiologically relevant methods: microsphiltration and ex vivo spleen perfusion. P. falciparum-infected RBCs obtained from in vitro cultures and from patients were used in either normoxic or hypoxic conditions. The effect of sickling in ring-infected HbAS RBCs was also investigated. RESULTS: When a laboratory-adapted parasite strain was analysed, ring-infected HbAA RBCs were retained in microsphilters at similar or greater levels than ring-infected HbAS RBCs, under normoxic (retention rate 62.5 vs 43.8 %, P < 0.01) and hypoxic (54.0 vs 38.0 %, P = 0.11) conditions. When parasitized RBCs from Malian children were analysed, retention of ring-infected HbAA and HbAS RBCs was similar when tested either directly ex vivo (32.1 vs 28.7 %, P = 0.52) or after one re-invasion in vitro (55.9 vs 43.7 %, P = 0.30). In hypoxia, sickling of uninfected and ring-infected HbAS RBCs (8.6 vs 5.7 %, P = 0.51), and retention of ring-infected HbAA and HbAS RBCs in microsphilters (72.5 vs 68.8 %, P = 0.38) and spleens (41.2 vs 30.4 %, P = 0.11), also did not differ. Retention of HbAS and HbAA RBCs infected with mature P. falciparum stages was greater than 95 %. CONCLUSIONS: Sickle-cell trait is not associated with higher retention or sickling of ring-infected RBCs in experimental systems reflecting the mechanical sensing of RBCs by the human spleen. As observed with HbAA RBCs, HbAS RBCs infected with mature parasites are completely retained. Because the cytoadherence of HbAS RBCs infected with mature parasites is impaired, the very efficient splenic retention of such non-adherent infected RBCs is expected to result in a slower rise of P. falciparum parasitaemia in sickle-cell trait carriers.

5.
J Infect Dis ; 211(2): 290-7, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25183768

RESUMO

BACKGROUND: In Plasmodium falciparum-infected patients treated with artemisinins, parasitemia declines through so-called pitting, an innate splenic process that transforms infected red blood cells (iRBCs) into once-infected RBCs (O-iRBCs). METHODS: We measured pitting in 83 French travelers and 42 Malian children treated for malaria with artesunate. RESULTS: In travelers, O-iRBCs peaked at 107.7% initial parasitemia. In Malian children aged 1.5-4 years, O-iRBCs peaked at higher concentrations than in children aged 9-13 years (91.60% vs 31.95%; P = .0097). The parasite clearance time in older children was shorter than in younger children (P = .0001), and the decline in parasitemia in children aged 1.5-4 years often started 6 hours after treatment initiation, a lag phase generally absent in infants and older children. A 6-hour lag phase in artificial pitting of artesunate-exposed iRBCs was also observed in vitro. The proportion of iRBCs recognized by autologous immunoglobulin G (IgG) correlated with the parasite clearance time (r = -0.501; P = .0006) and peak O-iRBC concentration (r = -0.420; P = .0033). CONCLUSIONS: Antimalarial immunity correlates with fast artemisinin-induced parasite clearance and low pitting rates. In nonimmune populations, artemisinin-induced P. falciparum clearance is related to pitting and starts after a 6-hour lag phase. In immune populations, passively and naturally acquired immune mechanisms operating faster than pitting may exist. This mechanism may mitigate the emergence of artemisinin-resistant P. falciparum in Africa.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Plasmodium falciparum/efeitos dos fármacos , Adolescente , Adulto , Artesunato , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Mali , Carga Parasitária , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Plasmodium falciparum/isolamento & purificação , Estudos Retrospectivos , Resultado do Tratamento
6.
J Infect Dis ; 207(11): 1655-63, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23448727

RESUMO

BACKGROUND: Artemisinin resistance, a long parasite clearance half-life in response to artemisinin, has been described in patients with Plasmodium falciparum malaria in southeast Asia. Few baseline half-lives have been reported from Africa, where artemisinins were recently introduced. METHODS: We treated P. falciparum malaria in 215 Malian children aged 0.5-15 years with artesunate (0, 24, 48 hours) and amodiaquine (72, 96, 120 hours). We estimated half-life by measuring parasite density every 6 hours until undetectable and evaluated the effects of age, sex, ethnicity, and red blood cell (RBC) polymorphisms on half-life. We quantified the proportion of parasitized RBCs recognized by autologous immunoglobulin G (IgG). RESULTS: The geometric mean half-life was 1.9 hours (95% confidence interval, 1.8-2.0) and did not correlate with parasite ex vivo susceptibility to artemisinins. In a linear model accounting for host factors, half-life decreased by 4.1 minutes for every 1-year increase in age. The proportion of parasitized RBCs recognized by IgG correlated inversely with half-life (r = -0.475; P = .0006). CONCLUSIONS: Parasite clearance in response to artesunate is faster in Mali than in southeast Asia. IgG responses to parasitized RBCs shorten half-life and may influence this parameter in areas where age is not an adequate surrogate of immunity and correlates of parasite-clearing immunity have not been identified. CLINICAL TRIALS REGISTRATION: NCT00669084.


Assuntos
Imunidade Adaptativa , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Malária Falciparum/tratamento farmacológico , Malária Falciparum/imunologia , Carga Parasitária , Plasmodium falciparum/imunologia , Adolescente , Amodiaquina/administração & dosagem , Anticorpos Antiprotozoários/sangue , Artesunato , Criança , Pré-Escolar , Estudos de Coortes , Eritrócitos/parasitologia , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Masculino , Mali , Parasitemia/tratamento farmacológico , Parasitemia/imunologia , Plasmodium falciparum/isolamento & purificação
7.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659832

RESUMO

Background: Ps48/45, a Plasmodium gametocyte surface protein, is a promising candidate for malaria transmission-blocking (TB) vaccine. Due to its relevance for a multispecies vaccine, we explored the cross-reactivity and TB activity of a recombinant P. vivax Ps48/45 protein (rPvs48/45) with sera from P. falciparum-exposed African donors. Methods: rPvs48/45 was produced in Chinese hamster ovary cell lines and tested by ELISA for its cross-reactivity with sera from Burkina Faso, Tanzania, Mali, and Nigeria - In addition, BALB/c mice were immunized with the rPvs48/45 protein formulated in Montanide ISA-51 and inoculated with a crude extract of P. falciparum NF-54 gametocytes to evaluate the parasite-boosting effect on rPvs48/45 antibody titers. Specific anti-rPvs48/45 IgG purified from African sera was used to evaluate the ex vivo TB activity on P. falciparum, using standard mosquito membrane feeding assays (SMFA). Results: rPvs48/45 protein showed cross-reactivity with sera of individuals from all four African countries, in proportions ranging from 94% (Tanzania) to 40% (Nigeria). Also, the level of cross-reactive antibodies varied significantly between countries (p<0.0001), with a higher antibody level in Mali and the lowest in Nigeria. In addition, antibody levels were higher in adults (≥ 17 years) than young children (≤ 5 years) in both Mali and Tanzania, with a higher proportion of responders in adults (90%) than in children (61%) (p<0.0001) in Mali, where male (75%) and female (80%) displayed similar antibody responses. Furthermore, immunization of mice with P. falciparum gametocytes boosted anti-Pvs48/45 antibody responses, recognizing P. falciparum gametocytes in indirect immunofluorescence antibody test. Notably, rPvs48/45 affinity-purified African IgG exhibited a TB activity of 61% against P. falciparum in SMFA. Conclusion: African sera (exposed only to P. falciparum) cross-recognized the rPvs48/45 protein. This, together with the functional activity of IgG, warrants further studies for the potential development of a P. vivax and P. falciparum cross-protective TB vaccine.

8.
Nat Commun ; 15(1): 7659, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227370

RESUMO

The selection and combination of dose regimens for antimalarials involve complex considerations including pharmacokinetic and pharmacodynamic interactions. In this study, we use immediate ex vivo P. falciparum field isolates to evaluate the effect of cabamiquine and pyronaridine as standalone treatments and in combination therapy. We feed the data into a pharmacometrics model to generate an interaction map and simulate meaningful clinical dose ratios. We demonstrate that the pharmacometrics model of parasite growth and killing provides a detailed description of parasite kinetics against cabamiquine-susceptible and resistant parasites. Pyronaridine monotherapy provides suboptimal killing rates at doses as high as 720 mg. In contrast, the combination of a single dose of 330 mg cabamiquine and 360 mg pyronaridine provides over 90% parasite killing in most of the simulated patients. The described methodology that combines a rapid, 3R-compliant in vitro method and modelling to set meaningful doses for new antimalarials could contribute to clinical drug development.


Assuntos
Antimaláricos , Malária Falciparum , Naftiridinas , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/administração & dosagem , Antimaláricos/farmacocinética , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Naftiridinas/administração & dosagem , Naftiridinas/farmacologia , Naftiridinas/farmacocinética , Quimioterapia Combinada , Relação Dose-Resposta a Droga , Resistência a Medicamentos/efeitos dos fármacos
9.
J Immunol Methods ; 517: 113488, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37179012

RESUMO

The levels of immune response to SARS-CoV-2 infection or vaccination are poorly understood in African populations and is complicated by cross-reactivity to endemic pathogens as well as differences in host responsiveness. To begin to determine the best approach to minimize false positive antibody levels to SARS-CoV-2 in an African population, we evaluated three commercial assays, namely Bio-Rad Platelia SARS-CoV-2 Total Antibody (Platelia), Quanterix Simoa Semi-Quantitative SARS-CoV-2 IgG Antibody Test (anti-Spike), and the GenScript cPass™ SARS-CoV-2 Neutralization Antibody Detection Kit (cPass) using samples collected in Mali in West Africa prior to the emergence of SARS-CoV-2. A total of one hundred samples were assayed. The samples were categorized in two groups based on the presence or absence of clinical malaria. Overall, thirteen out of one hundred (13/100) samples were false positives with the Bio-Rad Platelia assay and one of the same one hundred (1/100) was a false positive with the anti-Spike IgG Quanterix assay. None of the samples tested with the GenScript cPass assay were positive. False positives were more common in the clinical malaria group, 10/50 (20%) vs. the non-malaria group 3/50 (6%); p = 0.0374 using the Bio-Rad Platelia assay. Association between false positive results and parasitemia by Bio-Rad remained evident, after adjusting for age and sex in multivariate analyses. In summary, the impact of clinical malaria on assay performance appears to depend on the assay and/or antigen being used. A careful evaluation of any given assay in the local context is a prerequisite for reliable serological assessment of anti-SARS-CoV-2 humoral immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Anticorpos Antivirais , Bioensaio , População Negra , Sensibilidade e Especificidade
10.
Parasite Epidemiol Control ; 20: e00283, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36704118

RESUMO

Despite a significant reduction in the burden of malaria in children under five years-old, the efficient implementation of seasonal malaria chemoprevention (SMC) at large scale remains a major concern in areas with long malaria transmission. Low coverage rate in the unattainable areas during the rainy season, a shift in the risk of malaria to older children and the rebound in malaria incidence after stopping drug administration are mainly reported in these areas. These gaps represent a major challenge in the efficient implementation of SMC measures. An open randomized study was conducted to assess the effect of a fifth additional round to current regime of SMC in older children living in Dangassa, a rural malaria endemic area. Poisson regression Model was used to estimate the reduction in malaria incidence in the intervention group compared to the control group including age groups (5-9 and 10-14 years) and the use of long-lasting insecticidal nets (LLINs; Yes or No) with a threshold at 5%. Overall, a downward trend in participation rate was observed from August (94.3%) to November (87.2%). In November (round 4), the risk of malaria incidence was similar in both groups (IRR = 0.66, 95%CI [0.35-1.22]). In December (round 5), a decrease of 51% in malaria incidence was observed in intervention group compared to control group adjusted for age groups and the use of LLINs (IRR = 0.49, 95%CI [0.26-0.94]), of which 17% of reduction is attributable to the 5th round in the intervention group. An additional fifth round of SMC resulted in a significant reduction of malaria incidence in the intervention group. The number of SMC rounds could be adapted to the local condition of malaria transmission.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa