Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Am J Hematol ; 98(4): 588-597, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36594185

RESUMO

To enhance protective cytomegalovirus (CMV)-specific T cells in immunosuppressed recipients of an allogeneic hematopoietic cell transplant (HCT), we evaluated post-HCT impact of vaccinating healthy HCT donors with Triplex. Triplex is a viral vectored recombinant vaccine expressing three immunodominant CMV antigens. The vector is modified vaccinia Ankara (MVA), an attenuated, non-replicating poxvirus derived from the vaccinia virus strain Ankara. It demonstrated tolerability and immunogenicity in healthy adults and HCT recipients, in whom it also reduced CMV reactivation. Here, we report feasibility, safety, and immunological outcomes of a pilot phase 1 trial (NCT03560752 at ClinicalTrials.gov) including 17 CMV-seropositive recipients who received an HCT from a matched related donor (MRD) vaccinated with 5.1 × 108 pfu/ml of Triplex before cell harvest (median 15, range 11-28 days). Donor and recipient pairs who committed to participation in the trial resulted in exceptional adherence to the protocol. Triplex was well-tolerated with limited adverse events in donors and recipients, who all engrafted with full donor chimerism. On day 28 post-HCT, levels of functional vaccinia- and CMV-specific CD137+ CD8+ T cells were significantly higher (p < .0001 and p = .0174, respectively) in recipients of Triplex vaccinated MRD than unvaccinated MRD (control cohort). Predominantly, central and effector memory CMV-specific T-cell responses continued to steadily expand through 1-year follow-up. CMV viremia requiring antivirals developed in three recipients (18%). In summary, this novel approach represents a promising strategy applicable to different HCT settings for limiting the use of antiviral prophylaxis, which can impair and delay CMV-specific immunity, leading to CMV reactivation requiring treatment.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Vacínia , Adulto , Humanos , Citomegalovirus , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T CD8-Positivos , Vacínia/tratamento farmacológico , Vacínia/etiologia , Infecções por Citomegalovirus/prevenção & controle , Antivirais/uso terapêutico , Vacinação
2.
Ann Intern Med ; 172(5): 306-316, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32040960

RESUMO

Background: Triplex vaccine was developed to enhance cytomegalovirus (CMV)-specific T cells and prevent CMV reactivation early after hematopoietic stem cell transplant (HCT). Objective: To determine the safety and efficacy of Triplex. Design: First-in-patient, phase 2 trial. (ClinicalTrials.gov: NCT02506933). Setting: 3 U.S. HCT centers. Participants: 102 CMV-seropositive HCT recipients at high risk for CMV reactivation. Intervention: Intramuscular injections of Triplex or placebo were given on days 28 and 56 after HCT. Triplex is a recombinant attenuated poxvirus (modified vaccinia Ankara) expressing immunodominant CMV antigens. Measurements: The primary outcomes were CMV events (CMV DNA level ≥1250 IU/mL, CMV viremia requiring antiviral treatment, or end-organ disease), nonrelapse mortality, and severe (grade 3 or 4) graft-versus-host disease (GVHD), all evaluated through 100 days after HCT, and grade 3 or 4 adverse events (AEs) within 2 weeks after vaccination that were probably or definitely attributable to injection. Results: A total of 102 patients (51 per group) received the first vaccination, and 91 (89.2%) received both vaccinations (46 Triplex and 45 placebo). Reactivation of CMV occurred in 5 Triplex (9.8%) and 10 placebo (19.6%) recipients (hazard ratio, 0.46 [95% CI, 0.16 to 1.4]; P = 0.075). No Triplex recipient died of nonrelapse causes during the first 100 days or had serious AEs, and no grade 3 or 4 AEs related to vaccination were observed within 2 weeks after vaccination. Incidence of severe acute GVHD after injection was similar between groups (hazard ratio, 1.1 [CI, 0.53 to 2.4]; P = 0.23). Levels of long-lasting, pp65-specific T cells with effector memory phenotype were significantly higher in Triplex than placebo recipients. Limitation: The lower-than-expected incidence of CMV events in the placebo group reduced the power of the trial. Conclusion: No vaccine-associated safety concerns were identified. Triplex elicited and amplified CMV-specific immune responses, and fewer Triplex-vaccinated patients had CMV viremia. Primary Funding Source: National Cancer Institute and Helocyte.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/uso terapêutico , Citomegalovirus , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Viremia/prevenção & controle , Idoso , Citomegalovirus/imunologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
J Infect Dis ; 221(Suppl 1): S113-S122, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134478

RESUMO

Numerous candidate vaccines against cytomegalovirus (CMV) infection and disease are in development. Whereas the previous article [1] provides background and opinions about the issues relating to vaccination, this article provides specifics about the vaccines in active development, as reported at a National Institutes of Health-sponsored meeting in Bethesda on September 4-6, 2018. Here, vaccine developers provide synopses of their candidate vaccines to immunize women to protect against congenital CMV disease and to prevent the consequences of CMV disease in recipients of transplanted organs or hematopoietic stem calls. The projects are presented here roughly in the descending order of their stage of development in the opinion of the first author.


Assuntos
Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Transplante de Órgãos/efeitos adversos , Avaliação de Resultados da Assistência ao Paciente , Transplante de Células-Tronco/efeitos adversos , Vacinação
4.
J Infect Dis ; 222(5): 853-862, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32285133

RESUMO

Human cytomegalovirus (CMV) is a ubiquitous pathogen that causes significant morbidity in some vulnerable populations. Individualized adoptive transfer of ex vivo expanded CMV-specific CD8+ T cells has provided proof-of-concept that immunotherapy can be highly effective, but a chimeric antigen receptor (CAR) approach would provide a feasible method for broad application. We created 8 novel CARs using anti-CMV neutralizing antibody sequences, which were transduced via lentiviral vector into primary CD8+ T cells. All CARs were expressed. Activity against CMV-infected target cells was assessed by release of cytokines (interferon-γ and tumor necrosis factor-α), upregulation of surface CD107a, proliferation, cytolysis of infected cells, and suppression of viral replication. While some CARs showed varying functional activity across these assays, 1 CAR based on antibody 21E9 was consistently superior in all measures. These results support development of a CMV-specific CAR for therapeutic use against CMV and potentially other applications harnessing CMV-driven immunotherapies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/imunologia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Células HEK293 , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Transdução Genética , Replicação Viral
5.
Ann Surg ; 272(2): e132-e138, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32675516

RESUMO

: There is a long history of personal protective equipment (PPE) used by the surgeon to minimize the transmission of various pathogens. In the context of the present coronavirus disease 2019 pandemic there is significant controversy as to what forms of PPE are appropriate or adequate. This review aims to describe the pathogenic mechanism and route of spread of the causative virus, severe acute respiratory syndrome coronavirus, as it pertains to accumulated published data from experienced centers globally. The various forms of PPE that are both available and appropriate are addressed. There are options in the form of eyewear, gloves, masks, respirators, and gowns. The logical and practical utilization of these should be data driven and evolve based on both experience and data. Last, situations specific to surgical populations are addressed. We aim to provide granular collective data that has thus far been published and that can be used as a reference for optimal PPE choices in the perioperative setting for surgical teams.


Assuntos
Infecções por Coronavirus/prevenção & controle , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Pneumonia Viral/prevenção & controle , Cirurgiões , Procedimentos Cirúrgicos Operatórios , Betacoronavirus , COVID-19 , Infecções por Coronavirus/transmissão , Humanos , Pneumonia Viral/transmissão , SARS-CoV-2
6.
Biol Blood Marrow Transplant ; 25(4): 771-784, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30562587

RESUMO

Early cytomegalovirus (CMV) reactivation remains a significant cause of morbidity and mortality in allogeneic hematopoietic cell transplant (HCT) recipients. CMVPepVax is an investigational peptide vaccine designed to control CMV infection in HCT recipients seropositive for CMV by stimulating the expansion of T cell subsets that target the CMV tegument protein pp65. In a randomized Phase Ib pilot trial (ClinicalTrials.gov NCT01588015), two injections of CMVPepVax (at days 28 and 56 post-HCT) demonstrated safety, immunogenicity, increased relapse-free survival, and reduced CMV reactivation and use of antivirals. In the present study, we assessed the phenotypes and time courses of the pp65-specific CD8 T cell subsets that expanded in response to CMVPepVax vaccination. The functionality and antiviral role of CMV-specific T cells have been linked to immune reconstitution profiles characterized predominantly by differentiated effector memory T (TEM) subsets that have lost membrane expression of the costimulatory molecule CD28 and often reexpress the RA isoform of CD45 (TEMRA). Major histocompatibility complex class I pp65495-503 multimers, as well as CD28 and CD45 memory markers, were used to detect immune reconstitution in blood specimens from HCT recipients enrolled in the Phase Ib clinical trial. Specimens from the 10 (out of 18) vaccinated patients who had adequate (≥.2%) multimer binding to allow for memory analysis showed highly differentiated TEM and TEMRA phenotypes for pp65495-503-specific CD8 T cells during the first 100days post-transplantation. In particular, by day 70, during the period of highest risk for CMV reactivation, combined TEM and TEMRA phenotypes constituted a median of 90% of pp65495-503-specific CD8 T cells in these vaccinated patients. CMV viremia was not detectable in the patients who received CMVPepVax, although their pp65495-503-specific CD8 T cell profiles were strikingly similar to those observed in viremic patients who did not receive the vaccine. Collectively, our findings indicate that in the absence of clinically relevant viremia, CMVPepVax reconstituted significant levels of differentiated pp65495-503-specific CD8 TEMs early post-HCT. Our data indicate that the rapid reconstitution of CMV-specific T cells with marked levels of effector phenotypes may have been key to the favorable outcomes of the CMVPepVax clinical trial.


Assuntos
Infecções por Citomegalovirus/tratamento farmacológico , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Subpopulações de Linfócitos T/imunologia , Condicionamento Pré-Transplante/métodos , Vacinação/métodos , Feminino , Humanos , Estudos Longitudinais , Masculino , Fenótipo
7.
J Virol ; 92(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30045984

RESUMO

As human cytomegalovirus (HCMV) is a common cause of disease in newborns and transplant recipients, developing an HCMV vaccine is considered a major public health priority. Yet an HCMV vaccine candidate remains elusive. Although the precise HCMV immune correlates of protection are unclear, both humoral and cellular immune responses have been implicated in protection against HCMV infection and disease. Here we describe a vaccine approach based on the well-characterized modified vaccinia virus Ankara (MVA) vector to stimulate robust HCMV humoral and cellular immune responses by an antigen combination composed of the envelope pentamer complex (PC), glycoprotein B (gB), and phosphoprotein 65 (pp65). We show that in mice, multiantigenic MVA vaccine vectors simultaneously expressing all five PC subunits, gB, and pp65 elicit potent complement-independent and complement-dependent HCMV neutralizing antibodies as well as mouse and human MHC-restricted, polyfunctional T cell responses by the individual antigens. In addition, we demonstrate that the PC/gB antigen combination of these multiantigenic MVA vectors can enhance the stimulation of humoral immune responses that mediate in vitro neutralization of different HCMV strains and antibody-dependent cellular cytotoxicity. These results support the use of MVA to develop a multiantigenic vaccine candidate for controlling HCMV infection and disease in different target populations, such as pregnant women and transplant recipients.IMPORTANCE The development of a human cytomegalovirus (HCMV) vaccine to prevent congenital disease and transplantation-related complications is an unmet medical need. While many HCMV vaccine candidates have been developed, partial success in preventing or controlling HCMV infection in women of childbearing age and transplant recipients has been observed with an approach based on envelope glycoprotein B (gB). We introduce a novel vaccine strategy based on the clinically deployable modified vaccinia virus Ankara (MVA) vaccine vector to elicit potent humoral and cellular immune responses by multiple immunodominant HCMV antigens, including gB, phosphoprotein 65, and all five subunits of the pentamer complex. These findings could contribute to development of a multiantigenic vaccine strategy that may afford more protection against HCMV infection and disease than a vaccine approach employing solely gB.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Fosfoproteínas/imunologia , Vaccinia virus/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Antígenos Virais/genética , Antígenos Virais/imunologia , Sequência de Bases , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/genética , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Camundongos , Fosfoproteínas/genética , Gravidez , Alinhamento de Sequência , Transdução de Sinais , Vaccinia virus/genética , Proteínas do Envelope Viral/genética , Proteínas da Matriz Viral/genética
8.
Blood ; 129(1): 114-125, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27760761

RESUMO

Attenuated poxvirus modified vaccinia Ankara (MVA) is a useful viral-based vaccine for clinical investigation, because of its excellent safety profile and property of inducing potent immune responses against recombinant (r) antigens. We developed Triplex by constructing an rMVA encoding 3 immunodominant cytomegalovirus (CMV) antigens, which stimulates a host antiviral response: UL83 (pp65), UL123 (IE1-exon4), and UL122 (IE2-exon5). We completed the first clinical evaluation of the Triplex vaccine in 24 healthy adults, with or without immunity to CMV and vaccinia virus (previous DryVax smallpox vaccination). Three escalating dose levels (DL) were administered IM in 8 subjects/DL, with an identical booster injection 28 days later and 1-year follow-up. Vaccinations at all DL were safe with no dose-limiting toxicities. No vaccine-related serious adverse events were documented. Local and systemic reactogenicity was transient and self-limiting. Robust, functional, and durable Triplex-driven expansions of CMV-specific T cells were detected by measuring T-cell surface levels of 4-1BB (CD137), binding to CMV-specific HLA multimers, and interferon-γ production. Marked and durable CMV-specific T-cell responses were also detected in Triplex-vaccinated CMV-seronegatives, and in DryVax-vaccinated subjects. Long-lived memory effector phenotype, associated with viral control during CMV primary infection, was predominantly found on the membrane of CMV-specific and functional T cells, whereas off-target vaccine responses activating memory T cells from the related herpesvirus Epstein-Barr virus remained undetectable. Combined safety and immunogenicity results of MVA in allogeneic hematopoietic stem cell transplant (HCT) recipients and Triplex in healthy adults motivated the initiation of a placebo-controlled multicenter trial of Triplex in HCT patients. This trial was registered at www.clinicaltrials.gov as #NCT02506933.


Assuntos
Antígenos Virais/imunologia , Vacinas contra Citomegalovirus/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Adulto , Citomegalovirus , Vacinas contra Citomegalovirus/efeitos adversos , Feminino , Humanos , Proteínas Imediatamente Precoces/imunologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/imunologia , Transativadores/imunologia , Vacinas de DNA , Proteínas da Matriz Viral/imunologia , Vacinas Virais , Adulto Jovem
11.
J Virol ; 91(6)2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28077639

RESUMO

As human cytomegalovirus (HCMV) is the most common infectious cause of fetal anomalies during pregnancy, development of a vaccine that prevents HCMV infection is considered a global health priority. Although HCMV immune correlates of protection are only poorly defined, neutralizing antibodies (NAb) targeting the envelope pentamer complex (PC) composed of the subunits gH, gL, UL128, UL130, and UL131A are thought to contribute to the prevention of HCMV infection. Here, we describe a continuous target sequence within UL128 that is recognized by a previously isolated potent PC-specific NAb termed 13B5. By using peptide-based scanning procedures, we identified a 13-amino-acid-long target sequence at the UL128 C terminus that binds the 13B5 antibody with an affinity similar to that of the purified PC. In addition, the 13B5 binding site is universally conserved in HCMV, contains a previously described UL128/gL interaction site, and interferes with the 13B5 neutralizing function, indicating that the 13B5 epitope sequence is located within the PC at a site of critical importance for HCMV neutralization. Vaccination of mice with peptides containing the 13B5 target sequence resulted in the robust stimulation of binding antibodies and, in a subset of immunized animals, in the induction of detectable NAb, supporting that the identified 13B5 target sequence constitutes a PC-specific neutralizing epitope. These findings provide evidence for the discovery of a continuous neutralizing epitope within the UL128 subunit of the PC that could be an important target of humoral immune responses that are involved in protection against congenital HCMV infection.IMPORTANCE Neutralizing antibodies (NAb) targeting the human cytomegalovirus (HCMV) envelope pentamer complex (PC) are thought to be important for preventing HCMV transmission from the mother to the fetus, thereby mitigating severe developmental disabilities in newborns. However, the epitope sequences within the PC that are recognized by these potentially protective antibody responses are only poorly defined. Here, we provide evidence for the existence of a highly conserved, continuous, PC-specific epitope sequence that appears to be located within the PC at a subunit interaction site of critical importance for HCMV neutralization. These discoveries provide insights into a continuous PC-specific neutralizing epitope, which could be an important target for a vaccine formulation to interfere with congenital HCMV infection.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Epitopos de Linfócito B/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Sítios de Ligação , Sequência Conservada , Mapeamento de Epitopos , Camundongos
12.
Proc Natl Acad Sci U S A ; 112(44): 13645-50, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483473

RESUMO

Elucidation of maternal immune correlates of protection against congenital cytomegalovirus (CMV) is necessary to inform future vaccine design. Here, we present a novel rhesus macaque model of placental rhesus CMV (rhCMV) transmission and use it to dissect determinants of protection against congenital transmission following primary maternal rhCMV infection. In this model, asymptomatic intrauterine infection was observed following i.v. rhCMV inoculation during the early second trimester in two of three rhCMV-seronegative pregnant females. In contrast, fetal loss or infant CMV-associated sequelae occurred in four rhCMV-seronegative pregnant macaques that were CD4(+) T-cell depleted at the time of inoculation. Animals that received the CD4(+) T-cell-depleting antibody also exhibited higher plasma and amniotic fluid viral loads, dampened virus-specific CD8(+) T-cell responses, and delayed production of autologous neutralizing antibodies compared with immunocompetent monkeys. Thus, maternal CD4(+) T-cell immunity during primary rhCMV infection is important for controlling maternal viremia and inducing protective immune responses that prevent severe CMV-associated fetal disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/prevenção & controle , Transmissão Vertical de Doenças Infecciosas , Troca Materno-Fetal , Animais , Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/transmissão , Modelos Animais de Doenças , Feminino , Macaca mulatta , Gravidez
14.
J Surg Oncol ; 116(1): 7-15, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28605029

RESUMO

The tumor microenvironment in pancreatic cancer is a complex balance of pro- and anti-tumor components. The dense desmoplasia consists of immune cells, extracellular matrix, growth factors, cytokines, and cancer associated fibroblasts (CAF) or pancreatic stellate cells (PSC). There are a multitude of targets including hyaluronan, angiogenesis, focal adhesion kinase (FAK), connective tissue growth factor (CTGF), CD40, chemokine (C-X-C motif) receptor 4 (CXCR-4), immunotherapy, and Vitamin D. The developing clinical therapeutics will be reviewed.


Assuntos
Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Inibidores da Angiogênese/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/patologia , Carcinogênese , Transformação Celular Neoplásica , Ensaios Clínicos como Assunto , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Ácido Hialurônico/metabolismo , Imunoterapia , Macrófagos/patologia , Células Mieloides/patologia , Neutrófilos/patologia , Osteonectina/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Células Estreladas do Pâncreas/patologia , Vitamina D/farmacologia
15.
J Gen Virol ; 97(6): 1426-1438, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974598

RESUMO

Kidney epithelial cells are common targets for human and rhesus cytomegalovirus (HCMV and RhCMV) in vivo, and represent an important reservoir for long-term CMV shedding in urine. To better understand the role of kidney epithelial cells in primate CMV natural history, primary cultures of rhesus macaque kidney epithelial cells (MKE) were established and tested for infectivity by five RhCMV strains, including two wild-type strains (UCD52 and UCD59) and three strains containing different coding contents in UL/b'. The latter strains included 180.92 [containing an intact RhUL128-RhUL130-R hUL131 (RhUL128L) locus but deleted for the UL/b' RhUL148-rh167-loci], 68-1 (RhUL128L-defective and fibroblast-tropic) and BRh68-1.2 (the RhUL128L-repaired version of 68-1). As demonstrated by RhCMV cytopathic effect, plaque formation, growth kinetics and early virus entry, we showed that MKE were differentially susceptible to RhCMV infection, related to UL/b' coding contents of the different strains. UCD52 and UCD59 replicated vigorously in MKE, 68-1 replicated poorly, and 180.92 grew with intermediate kinetics. Reconstitution of RhUL128L in 68-1 (BRh68-1.2) restored its replication efficiency in MKE as compared to UCD52 and UCD59, consistent with the essential role of UL128L for HCMV epithelial tropism. Further analysis revealed that the UL/b' UL148-rh167-loci deletion in 180.92 impaired RhUL132 (rh160) expression. Given that 180.92 retains an intact RhUL128L, but genetically or functionally lacks genes from RhUL132 (rh160) to rh167 in UL/b', its attenuated infection efficiency indicated that, along with RhUL128L, an additional protein(s) encoded within the UL/b' RhUL132 (rh160)-rh167 region (potentially, RhUL132 and/or RhUL148) is indispensable for efficient replication in MKE.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Células Epiteliais/virologia , Rim/citologia , Macaca mulatta/virologia , Animais , Células Cultivadas , Citomegalovirus/fisiologia , Efeito Citopatogênico Viral , Ensaio de Placa Viral , Internalização do Vírus , Replicação Viral
16.
J Virol ; 89(23): 11884-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26378171

RESUMO

UNLABELLED: Human cytomegalovirus (HCMV) elicits neutralizing antibodies (NAb) of various potencies and cell type specificities to prevent HCMV entry into fibroblasts (FB) and epithelial/endothelial cells (EpC/EnC). NAb targeting the major essential envelope glycoprotein complexes gB and gH/gL inhibit both FB and EpC/EnC entry. In contrast to FB infection, HCMV entry into EpC/EnC is additionally blocked by extremely potent NAb to conformational epitopes of the gH/gL/UL128/130/131A pentamer complex (PC). We recently developed a vaccine concept based on coexpression of all five PC subunits by a single modified vaccinia virus Ankara (MVA) vector, termed MVA-PC. Vaccination of mice and rhesus macaques with MVA-PC resulted in a high titer and sustained NAb that blocked EpC/EnC infection and lower-titer NAb that inhibited FB entry. However, antibody function responsible for the neutralizing activity induced by the MVA-PC vaccine is uncharacterized. Here, we demonstrate that MVA-PC elicits NAb with cell type-specific neutralization potency and antigen recognition pattern similar to human NAb targeting conformational and linear epitopes of the UL128/130/131A subunits or gH. In addition, we show that the vaccine-derived PC-specific NAb are significantly more potent than the anti-gH NAb to prevent HCMV spread in EpC and infection of human placental cytotrophoblasts, cell types thought to be of critical importance for HCMV transmission to the fetus. These findings further validate MVA-PC as a clinical vaccine candidate to elicit NAb that resembles those induced during HCMV infection and provide valuable insights into the potency of PC-specific NAb to interfere with HCMV cell-associated spread and infection of key placental cells. IMPORTANCE: As a consequence of the leading role of human cytomegalovirus (HCMV) in causing permanent birth defects, developing a vaccine against HCMV has been assigned a major public health priority. We have recently introduced a vaccine strategy based on a widely used, safe, and well-characterized poxvirus vector platform to elicit potent and durable neutralizing antibody (NAb) responses targeting the HCMV envelope pentamer complex (PC), which has been suggested as a critical component for a vaccine to prevent congenital HCMV infection. With this work, we confirm that the NAb elicited by the vaccine vector have properties that are similar to those of human NAb isolated from individuals chronically infected with HCMV. In addition, we show that PC-specific NAb have potent ability to prevent infection of key placental cells that HCMV utilizes to cross the fetal-maternal interface, suggesting that NAb targeting the PC may be essential to prevent HCMV vertical transmission.


Assuntos
Anticorpos Neutralizantes/imunologia , Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/imunologia , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Complexos Multiproteicos/imunologia , Trofoblastos/virologia , Vacinas Virais/imunologia , Animais , Linhagem Celular , Immunoblotting , Macaca mulatta , Glicoproteínas de Membrana/imunologia , Camundongos , Testes de Neutralização , Proteínas do Envelope Viral/imunologia , Internalização do Vírus
17.
PLoS Pathog ; 10(11): e1004524, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25412505

RESUMO

Human Cytomegalovirus (HCMV) utilizes two different pathways for host cell entry. HCMV entry into fibroblasts requires glycoproteins gB and gH/gL, whereas HCMV entry into epithelial and endothelial cells (EC) requires an additional complex composed of gH, gL, UL128, UL130, and UL131A, referred to as the gH/gL-pentamer complex (gH/gL-PC). While there are no established correlates of protection against HCMV, antibodies are thought to be important in controlling infection. Neutralizing antibodies (NAb) that prevent gH/gL-PC mediated entry into EC are candidates to be assessed for in vivo protective function. However, these potent NAb are predominantly directed against conformational epitopes derived from the assembled gH/gL-PC. To address these concerns, we constructed Modified Vaccinia Ankara (MVA) viruses co-expressing all five gH/gL-PC subunits (MVA-gH/gL-PC), subsets of gH/gL-PC subunits (gH/gL or UL128/UL130/UL131A), or the gB subunit from HCMV strain TB40/E. We provide evidence for cell surface expression and assembly of complexes expressing full-length gH or gB, or their secretion when the corresponding transmembrane domains are deleted. Mice or rhesus macaques (RM) were vaccinated three times with MVA recombinants and serum NAb titers that prevented 50% infection of human EC or fibroblasts by HCMV TB40/E were determined. NAb responses induced by MVA-gH/gL-PC blocked HCMV infection of EC with potencies that were two orders of magnitude greater than those induced by MVA expressing gH/gL, UL128-UL131A, or gB. In addition, MVA-gH/gL-PC induced NAb responses that were durable and efficacious to prevent HCMV infection of Hofbauer macrophages, a fetal-derived cell localized within the placenta. NAb were also detectable in saliva of vaccinated RM and reached serum peak levels comparable to NAb titers found in HCMV hyperimmune globulins. This vaccine based on a translational poxvirus platform co-delivers all five HCMV gH/gL-PC subunits to achieve robust humoral responses that neutralize HCMV infection of EC, placental macrophages and fibroblasts, properties of potential value in a prophylactic vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Citomegalovirus , Complexos Multiproteicos , Proteínas do Envelope Viral , Animais , Citomegalovirus/genética , Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/genética , Vacinas contra Citomegalovirus/imunologia , Feminino , Humanos , Macaca mulatta , Camundongos , Camundongos Endogâmicos BALB C , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
18.
Biol Blood Marrow Transplant ; 21(9): 1653-62, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26055301

RESUMO

Cytomegalovirus (CMV) reactivates in >30% of CMV-seropositive patients after allogeneic hematopoietic cell transplantation (HCT). Previously, we reported an increase of natural killer (NK) cells expressing NKG2C, CD57, and inhibitory killer cell immunoglobulin-like receptors (KIRs) in response to CMV reactivation after HCT. These NK cells persist after the resolution of infection and display "adaptive" or memory properties. Despite these findings, the differential impact of persistent/inactive versus reactivated CMV on NK versus T cell maturation after HCT from different graft sources has not been defined. We compared the phenotype of NK and T cells from 292 recipients of allogeneic sibling (n = 118) or umbilical cord blood (UCB; n = 174) grafts based on recipient pretransplantation CMV serostatus and post-HCT CMV reactivation. This cohort was utilized to evaluate CMV-dependent increases in KIR-expressing NK cells exhibiting an adaptive phenotype (NKG2C(+)CD57(+)). Compared with CMV-seronegative recipients, those who reactivated CMV had the highest adaptive cell frequencies, whereas intermediate frequencies were observed in CMV-seropositive recipients harboring persistent/nonreplicating CMV. The same effect was observed in T cells and CD56(+) T cells. These adaptive lymphocyte subsets were increased in CMV-seropositive recipients of sibling but not UCB grafts and were correlated with lower rates of CMV reactivation (sibling 33% versus UCB 51%; P < .01). These data suggest that persistent/nonreplicating recipient CMV induces rapid production of adaptive NK and T cells from mature cells from sibling but not UCB grafts. These adaptive lymphocytes are associated with protection from CMV reactivation.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas , Receptores KIR/imunologia , Irmãos , Aloenxertos , Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/patologia , Feminino , Humanos , Células Matadoras Naturais , Masculino , Linfócitos T/imunologia , Linfócitos T/patologia
19.
J Clin Immunol ; 35(3): 289-301, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25712611

RESUMO

PURPOSE: CMV infection remains a priority for vaccine development. Vaccination of infants could modify congenital infection and provide lifetime immunity. Properties of CMV-specific T cells associated with control of viral replication in early life have not been fully defined. METHODS: CMV-specific CD4 and CD8 T cell responses were investigated in infants with congenital CMV infection and compared to adults with primary or chronic infection. PBMC were stimulated with UL83 (pp65) or UL122 (IE-2) peptide pools then stained with antibodies to markers of T cell subset (CD4 or CD8), phenotype (CD45RA, CCR7), or function (MIP1ß, CD107, IFNγ, IL2) for flow cytometry analysis. RESULTS: Detection of CMV pp65-specific CD4 T cells was less common in infants than adults. Responder cells were primarily effector memory (EM, CD45RA-CCR7-) in adults, but mixed memory subsets in infants. Detection of CMV pp65-specific CD8 T cells did not differ between the groups, but infants had lower frequencies of total responding cells and of MIP1ß- or CD107-expressing cells. Responder cells were EM or effector memory RA (CD45RA + CCR7-) in all groups. Polyfunctional T cells were less commonly detected in infants than adults. Responses to IE-2 were detected in adults but not infants. All infants had detectable circulating CMV DNA at initial study (versus 60 % of adults with primary infection) despite longer duration of CMV infection. CONCLUSIONS: Reduced frequencies and altered functional profile of CMV-specific CD4 and CD8 T cell responses were detected in infants compared to adults, and were associated with persistent CMV DNA in peripheral blood.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/imunologia , Adulto , Citomegalovirus/genética , Citomegalovirus/imunologia , Infecções por Citomegalovirus/sangue , DNA Viral/sangue , Humanos , Lactente , Recém-Nascido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa