Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(11): 2119-2134.e5, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848691

RESUMO

Protein synthesis is metabolically costly and must be tightly coordinated with changing cellular needs and nutrient availability. The cap-binding protein eIF4E makes the earliest contact between mRNAs and the translation machinery, offering a key regulatory nexus. We acutely depleted this essential protein and found surprisingly modest effects on cell growth and recovery of protein synthesis. Paradoxically, impaired protein biosynthesis upregulated genes involved in the catabolism of aromatic amino acids simultaneously with the induction of the amino acid biosynthetic regulon driven by the integrated stress response factor GCN4. We further identified the translational control of Pho85 cyclin 5 (PCL5), a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This regulation depended in part on a uniquely long poly(A) tract in the PCL5 5' UTR and poly(A) binding protein. Collectively, these results highlight how eIF4E connects protein synthesis to metabolic gene regulation, uncovering mechanisms controlling translation during environmental challenges.


Assuntos
Aminoácidos , Fator de Iniciação 4E em Eucariotos , Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regiões 5' não Traduzidas , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ciclinas/genética , Ciclinas/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/genética
2.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37214807

RESUMO

Protein synthesis is a crucial but metabolically costly biological process that must be tightly coordinated with cellular needs and nutrient availability. In response to environmental stress, translation initiation is modulated to control protein output while meeting new demands. The cap-binding protein eIF4E-the earliest contact between mRNAs and the translation machinery-serves as one point of control, but its contributions to mRNA-specific translation regulation remain poorly understood. To survey eIF4E-dependent translational control, we acutely depleted eIF4E and determined how this impacts protein synthesis. Despite its essentiality, eIF4E depletion had surprisingly modest effects on cell growth and protein synthesis. Analysis of transcript-level changes revealed that long-lived transcripts were downregulated, likely reflecting accelerated turnover. Paradoxically, eIF4E depletion led to simultaneous upregulation of genes involved in catabolism of aromatic amino acids, which arose as secondary effects of reduced protein biosynthesis on amino acid pools, and genes involved in the biosynthesis of amino acids. These futile cycles of amino acid synthesis and degradation were driven, in part, by translational activation of GCN4, a transcription factor typically induced by amino acid starvation. Furthermore, we identified a novel regulatory mechanism governing translation of PCL5, a negative regulator of Gcn4, that provides a consistent protein-to-mRNA ratio under varied translation environments. This translational control was partial dependent on a uniquely long poly-(A) tract in the PCL5 5' UTR and on poly-(A) binding protein. Collectively, these results highlight how eIF4E connects translation to amino acid homeostasis and stress responses and uncovers new mechanisms underlying how cells tightly control protein synthesis during environmental challenges.

3.
Cell Syst ; 11(2): 145-160.e5, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32710835

RESUMO

Genomic analyses in budding yeast have helped define the foundational principles of eukaryotic gene expression. However, in the absence of empirical methods for defining coding regions, these analyses have historically excluded specific classes of possible coding regions, such as those initiating at non-AUG start codons. Here, we applied an experimental approach to globally annotate translation initiation sites in yeast and identified 149 genes with alternative N-terminally extended protein isoforms initiating from near-cognate codons upstream of annotated AUG start codons. These isoforms are produced in concert with canonical isoforms and translated with high specificity, resulting from initiation at only a small subset of possible start codons. The non-AUG initiation driving their production is enriched during meiosis and induced by low eIF5A, which is seen in this context. These findings reveal widespread production of non-canonical protein isoforms and unexpected complexity to the rules by which even a simple eukaryotic genome is decoded.


Assuntos
Códon/metabolismo , Iniciação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa