Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 139(5): 2624, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250156

RESUMO

A technique useful for performing derating at acoustic powers where significant harmonic generation occurs is illustrated and validated with experimental measurements. The technique was previously presented using data from simulations. The method is based upon a Gaussian representation of the propagation modes, resulting in simple expressions for the modal quantities, but a Gaussian source is not required. The nonlinear interaction of modes within tissue is estimated from the nonlinear interaction in water, using appropriate amounts of source reduction and focal-point reduction derived from numerical simulations. An important feature of this nonlinear derating method is that focal temperatures can be estimated with little additional effort beyond that required to determine the focal pressure waveforms. Hydrophone measurements made in water were used to inform the derating algorithm, and the resulting pressure waveforms and increases in temperature were compared with values directly measured in tissue phantoms. For a 1.05 MHz focused transducer operated at 80 W and 128 W, the derated pressures (peak positive, peak negative) agreed with the directly measured values to within 11%. Focal temperature rises determined by the derating method agreed with values measured using a remote thermocouple technique with a difference of 17%.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas/métodos , Dinâmica não Linear , Processamento de Sinais Assistido por Computador , Ondas Ultrassônicas , Ultrassom/métodos , Tratamento por Ondas de Choque Extracorpóreas/instrumentação , Movimento (Física) , Distribuição Normal , Imagens de Fantasmas , Pressão , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo , Transdutores , Ultrassom/instrumentação , Água
2.
J Acoust Soc Am ; 134(5): 3435-45, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24180754

RESUMO

A method is introduced for using measurements made in water of the nonlinear acoustic pressure field produced by a high-intensity focused ultrasound transducer to compute the acoustic pressure and temperature rise in a tissue medium. The acoustic pressure harmonics generated by nonlinear propagation are represented as a sum of modes having a Gaussian functional dependence in the radial direction. While the method is derived in the context of Gaussian beams, final results are applicable to general transducer profiles. The focal acoustic pressure is obtained by solving an evolution equation in the axial variable. The nonlinear term in the evolution equation for tissue is modeled using modal amplitudes measured in water and suitably reduced using a combination of "source derating" (experiments in water performed at a lower source acoustic pressure than in tissue) and "endpoint derating" (amplitudes reduced at the target location). Numerical experiments showed that, with proper combinations of source derating and endpoint derating, direct simulations of acoustic pressure and temperature in tissue could be reproduced by derating within 5% error. Advantages of the derating approach presented include applicability over a wide range of gains, ease of computation (a single numerical quadrature is required), and readily obtained temperature estimates from the water measurements.


Assuntos
Dinâmica não Linear , Som , Ultrassom/métodos , Simulação por Computador , Movimento (Física) , Análise Numérica Assistida por Computador , Pressão , Temperatura , Fatores de Tempo , Transdutores de Pressão , Ultrassom/instrumentação , Água
3.
PLoS One ; 17(12): e0279309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36538548

RESUMO

The aerosol characteristics of electronic nicotine delivery systems (ENDS) are important parameters in predicting health outcomes since parameters such as aerosol particle size correlate strongly to aerosol delivery and deposition efficiency. However, many studies to date do not account for aerosol aging, which may affect the measurement of ultra-fine particles that typically coagulate or agglomerate during puff development. To reduce aerosol aging, we herein present a unique instrumentation method that combines a) positive pressure ENDS activation and sample collection, b) minimization of both sample tubing length and dilution factors, and c) a high-resolution, electrical low-pressure impactor. This novel approach was applied to systematically investigate the effects of coil design, coil temperature, and propylene glycol to vegetable glycerol ratios on aerosol characteristics including aerosol mass generation, aerosol count generation, and the mass and count size distributions for a high-powered ENDS. Aerosol count measurements revealed high concentrations of ultra-fine particles compared to fine and coarse particles at 200°C, while aerosol mass measurements showed an increase in the overall aerosol mass of fine and coarse particles with increases in temperature and decreases in propylene glycol content. These results provide a better understanding on how various ENDS design parameters affect aerosol characteristics and highlight the need for further research to identify the design parameters that most impact ultra-fine particle generation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Temperatura , Aerossóis/análise , Propilenoglicol , Material Particulado , Nebulizadores e Vaporizadores
4.
Micromachines (Basel) ; 11(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987728

RESUMO

The development of new standardized test methods would allow for the consistent evaluation of microfluidic medical devices and enable high-quality products to reach the market faster. A comprehensive flow characterization study was conducted to identify regulatory knowledge gaps using a generic inertia-based spiral channel model for particle sorting and facilitate standards development in the microfluidics community. Testing was performed using 2-20 µm rigid particles to represent blood elements and flow rates of 200-5000 µL/min to assess the effects of flow-related factors on overall system performance. Two channel designs were studied to determine the variability associated with using the same microchannel multiple times (coefficient of variation (CV) of 27% for Design 1 and 18% for Design 2, respectively). The impact of commonly occurring failure modes on device performance was also investigated by simulating progressive and complete channel outlet blockages. The pressure increased by 10-250% of the normal channel pressure depending on the extent of the blockage. Lastly, two common data analysis approaches were compared-imaging and particle counting. Both approaches were similar in terms of their sensitivity and consistency. Continued research is needed to develop standardized test methods for microfluidic systems, which will improve medical device performance testing and drive innovation in the biomedical field.

5.
PLoS One ; 13(11): e0206937, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395592

RESUMO

OBJECTIVES: For electronic nicotine delivery systems (ENDS), also commonly called e-cigarettes, coil temperature is a factor in the potential production of toxic chemical constituents. However, data are lacking regarding the temperatures that are achieved in the latest generation of these devices. Fourth-generation ENDS are capable of producing heating coil temperatures well above e-liquid boiling points, and allow the user to monitor and set the heating coil temperature during a puff. In this study, we evaluate the accuracy and consistency of the temperature measurement and control settings for different brands of fourth-generation ENDS. METHODS: A study was performed using three commercially available, fourth-generation ENDS. The atomizer coil temperatures were obtained from the device (using the EScribe software) reading and from thermocouples attached to the coils during simulated puffing conditions. In addition, aerosol temperatures were measured inside the atomizer and at the mouthpiece. RESULTS: Measured temperatures varied widely across samples taken from the same brand. For example, thermocouple measurements for one unit were 40 Celsius (°C) below the 300 °C set point, while another unit of the same brand exceeded the set point by more than 100 °C. We observed a significant variation in temperature (approximately 100 °C) along the length of the coil in some cases. CONCLUSIONS: The possibility of wide temperature variation across ENDS samples, as well as variations between maximum coil temperatures and internal temperature readings, may have implications for studies that seek to determine correlations between coil temperature and toxin generation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/normas , Nebulizadores e Vaporizadores/normas , Nicotina/química , Aerossóis/normas , Humanos , Temperatura , Termômetros
6.
PLoS One ; 12(4): e0175093, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28384646

RESUMO

Collateral damage and long sonication times occurring during high-intensity focused ultrasound (HIFU) ablation procedures limit clinical advancement. In this reserarch, we investigated whether the use of magnetic nano-particles (mNPs) can reduce the power required to ablate tissue or, for the same power, reduce the duration of the procedure. Tissue-mimicking phantoms containing embedded thermocouples and physiologically acceptable concentrations (0%, 0.0047%, and 0.047%) of mNPs were sonicated at acoustic powers of 5.2 W, 9.2 W, and 14.5 W, for 30 seconds. Lesion volumes were determined for the phantoms with and without mNPs. It was found that with the 0.047% mNP concentration, the power required to obtain a lesion volume of 13 mm3 can be halved, and the time required to achieve a 21 mm3 lesion decreased by a factor of 5. We conclude that mNPs have the potential to reduce damage to healthy tissue, and reduce the procedure time, during tumor ablation using HIFU.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Magnetismo , Nanopartículas , Humanos , Imagens de Fantasmas , Temperatura , Microtomografia por Raio-X
7.
Artigo em Inglês | MEDLINE | ID: mdl-25474777

RESUMO

In focused-ultrasound procedures such as vessel cauterization or clot lysis, targeting accuracy is critical. To investigate the targeting accuracy of the focused-ultrasound systems, tissue phantoms embedded with thermocouples can be employed. This paper describes a method that utilizes an array of thermocouples to localize the focused ultrasound beam. All of the thermocouples are located away from the beam, so that thermocouple artifacts and sensor interference are minimized. Beam propagation and temperature rise in the phantom are simulated numerically, and an optimization routine calculates the beam location that produces the best agreement between the numerical temperature values and those measured with thermocouples. The accuracy of the method was examined as a function of the array characteristics, including the number of thermocouples in the array and their orientation. For exposures with a 3.3-MHz source, the remote-thermocouple technique was able to predict the focal position to within 0.06 mm. Once the focal location is determined using the localization method, temperatures at desired locations (including the focus) can be estimated from remote thermocouple measurements by curve fitting an analytical solution to the heat equation. Temperature increases in the focal plane were predicted to within 5% agreement with measured values using this method.


Assuntos
Temperatura Alta , Imagens de Fantasmas , Terapia por Ultrassom/instrumentação , Algoritmos , Modelos Lineares , Sonicação , Terapia por Ultrassom/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa