Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 14(26): 5452-5460, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29911238

RESUMO

Adhesion of emulsified oil droplets to a surface plays an important role in processes such as crossflow membrane filtration, where the oil causes fouling. We present a novel technique, in which we study oil droplets on a model surface in a flow cell under shear force to determine the adhesive force between droplets and surface. We prepared an emulsion of hexadecane and used hydrophilic and hydrophobic glass slides as model surfaces. Different surfactants were used as emulsifiers: negatively charged sodium dodecyl sulphate (SDS), positively charged hexadecyltrimethylammonium bromide (CTAB) and nonionic Triton X-100. We evaluate the role of the surfactant, the glass surface properties and the ionic strength of the emulsion. We found a minimum in the adhesion force between droplets and surface as a function of surfactant concentration. The charged surfactants cause a lower droplet adhesion compared to the nonionic surfactant. The flow cell technique presented here proved to be very useful in understanding the interaction between oil droplets and a surface.

2.
J Colloid Interface Sci ; 556: 12-23, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31419735

RESUMO

Membrane filtration is a technique that can be successfully applied to remove oil from stable oil-in-water emulsions. This is especially interesting for the re-use of produced water (PW), a water stream stemming from the petrochemical industry, which contains dispersed oil, surface-active components and often has a high ionic strength. Due to the complexity of this emulsion, membrane fouling by produced water is more severe and less understood than membrane fouling by more simple oil-in-water emulsions. In this work, we study the relation between surfactant type and the effect of the ionic strength on membrane filtration of an artificial produced water emulsion. As surfactants, we use anionic sodium dodecyl sulphate (SDS), cationic hexadecyltrimethylammonium bromide (CTAB), nonionic Triton TMX-100 (TX) and zwitterionic N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS), at various ionic strengths (1, 10, 100 mM NaCl). Filtration experiments on a regenerated cellulose ultrafiltration (UF) membrane showed a pronounced effect of the ionic strength for the charged surfactants SDS and CTAB, although the nature of the effect was quite different. For anionic SDS, an increasing ionic strength leads to less droplet-droplet repulsion, allowing a denser cake layer to form, resulting in a much more pronounced flux decline. CTAB, on the other hand leads to a lower interfacial tension than observed for SDS, and thus more deformable oil droplets. At high ionic strength, increased surfactant adsorption leads to such a low oil-water surface tension that the oil droplets can permeate through the much smaller membrane pores. For the nonionic surfactant TX, no clear effect of the ionic strength was observed, but the flux decline is very high compared to the other surfactants. For the zwitterionic surfactant DDAPS, the flux decline was found to be very low and even decreased with increasing ionic strength, suggesting that membrane fouling decreases with increasing ionic strength. Especially promising is that at lower surfactant concentration (0.1 CMC) and high ionic strength no flux decline was observed, while a high oil retention (85%) was obtained. From our results, it becomes clear that the type of the surfactant used is crucial for a successful application of membrane filtration for PW treatment, especially at high ionic strengths. In addition, they point out that the application of zwitterionic surfactants can be highly beneficial for PW treatment with membranes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa