Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 61(17): 1844-1852, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35985031

RESUMO

Vanadium-dependent haloperoxidases (VHPOs) from Streptomyces bacteria differ from their counterparts in fungi, macroalgae, and other bacteria by catalyzing organohalogenating reactions with strict regiochemical and stereochemical control. While this group of enzymes collectively uses hydrogen peroxide to oxidize halides for incorporation into electron-rich organic molecules, the mechanism for the controlled transfer of highly reactive chloronium ions in the biosynthesis of napyradiomycin and merochlorin antibiotics sets the Streptomyces vanadium-dependent chloroperoxidases apart. Here we report high-resolution crystal structures of two homologous VHPO family members associated with napyradiomycin biosynthesis, NapH1 and NapH3, that catalyze distinctive chemical reactions in the construction of meroterpenoid natural products. The structures, combined with site-directed mutagenesis and intact protein mass spectrometry studies, afforded a mechanistic model for the asymmetric alkene and arene chlorination reactions catalyzed by NapH1 and the isomerase activity catalyzed by NapH3. A key lysine residue in NapH1 situated between the coordinated vanadate and the putative substrate binding pocket was shown to be essential for catalysis. This observation suggested the involvement of the ε-NH2, possibly through formation of a transient chloramine, as the chlorinating species much as proposed in structurally distinct flavin-dependent halogenases. Unexpectedly, NapH3 is modified post-translationally by phosphorylation of an active site His (τ-pHis) consistent with its repurposed halogenation-independent, α-hydroxyketone isomerase activity. These structural studies deepen our understanding of the mechanistic underpinnings of VHPO enzymes and their evolution as enantioselective biocatalysts.


Assuntos
Streptomyces , Vanádio , Antibacterianos/química , Catálise , Isomerases , Vanádio/química
2.
Proc Natl Acad Sci U S A ; 113(14): 3797-802, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001835

RESUMO

Halogenated pyrroles (halopyrroles) are common chemical moieties found in bioactive bacterial natural products. The halopyrrole moieties of mono- and dihalopyrrole-containing compounds arise from a conserved mechanism in which a proline-derived pyrrolyl group bound to a carrier protein is first halogenated and then elaborated by peptidic or polyketide extensions. This paradigm is broken during the marine pseudoalteromonad bacterial biosynthesis of the coral larval settlement cue tetrabromopyrrole (1), which arises from the substitution of the proline-derived carboxylate by a bromine atom. To understand the molecular basis for decarboxylative bromination in the biosynthesis of 1, we sequenced two Pseudoalteromonas genomes and identified a conserved four-gene locus encoding the enzymes involved in its complete biosynthesis. Through total in vitro reconstitution of the biosynthesis of 1 using purified enzymes and biochemical interrogation of individual biochemical steps, we show that all four bromine atoms in 1 are installed by the action of a single flavin-dependent halogenase: Bmp2. Tetrabromination of the pyrrole induces a thioesterase-mediated offloading reaction from the carrier protein and activates the biosynthetic intermediate for decarboxylation. Insights into the tetrabrominating activity of Bmp2 were obtained from the high-resolution crystal structure of the halogenase contrasted against structurally homologous halogenase Mpy16 that forms only a dihalogenated pyrrole in marinopyrrole biosynthesis. Structure-guided mutagenesis of the proposed substrate-binding pocket of Bmp2 led to a reduction in the degree of halogenation catalyzed. Our study provides a biogenetic basis for the biosynthesis of 1 and sets a firm foundation for querying the biosynthetic potential for the production of 1 in marine (meta)genomes.


Assuntos
Flavinas/metabolismo , Halogenação/fisiologia , Pseudoalteromonas/enzimologia , Pseudoalteromonas/metabolismo , Pirróis/química , Sequência de Aminoácidos , Animais , Antozoários/metabolismo , Organismos Aquáticos/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Bromo/química , Cristalografia por Raios X , Pseudoalteromonas/genética
3.
J Am Chem Soc ; 137(18): 6084-96, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25867818

RESUMO

Plants of the species Gelsemium have found application in traditional Asian medicine for over a thousand years. Gelsemoxonine represents a novel constituent of this plant incorporating a highly functionalized azetidine at its core. We herein report a full account of our studies directed toward the total synthesis of gelsemoxonine that relies on a conceptually new approach for the construction of the central azacyclobutane. A spirocyclopropane isoxazolidine ring contraction was employed to access a key ß-lactam intermediate, which could be further elaborated to the azetidine of the natural product. In the course of our studies, we have gained detailed insight into this intriguing transformation. Furthermore, we report on previously unnoticed oligomerization chemistry of gelsemoxonine. We also document an enantioselective synthesis of a key precursor en route to gelsemoxonine.


Assuntos
Ciclopropanos/química , Alcaloides Indólicos/síntese química , Isoxazóis/química , Compostos de Espiro/química , Alcaloides Indólicos/química , Modelos Moleculares , Conformação Molecular
4.
Chemistry ; 20(20): 6071-80, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24687726

RESUMO

Serine proteases play key roles in many biological processes and are associated with several human diseases such as thrombosis or cancer. During the search for selective inhibitors of serine proteases, a family of linear peptides named the aeruginosins was discovered in marine cyanobacteria. We herein report an entry route into the synthetically challenging core fragment of these natural products. Starting from the common oxabicyclic building block 11, we accessed the octahydroindole core of the aeruginosins, exemplified by the total synthesis of microcin SF608 (2). Key to the synthetic strategy is a highly efficient nucleophilic opening of an oxabicyclo[2.2.1]heptane producing the hydroindole motif of microcin SF608. Moreover, during the synthetic efforts we have observed an unusual regioselective epoxide reduction. Detailed experimental studies of this reaction led us to propose a mechanistic rationale involving intramolecular hydrogen atom delivery by a carbamate NH group to control the regioselectivity of the homolytic epoxide cleavage.


Assuntos
Produtos Biológicos/síntese química , Peptídeos/síntese química , Inibidores de Serina Proteinase/síntese química , Produtos Biológicos/química , Compostos de Epóxi/química , Indóis/síntese química , Indóis/química , Oxirredução , Peptídeos/química , Inibidores de Serina Proteinase/química , Estereoisomerismo
5.
Angew Chem Int Ed Engl ; 53(41): 11023-6, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25147132

RESUMO

The vanadium-dependent chloroperoxidase Mcl24 was discovered to mediate a complex series of unprecedented transformations in the biosynthesis of the merochlorin meroterpenoid antibiotics. In particular, a site-selective naphthol chlorination is followed by an oxidative dearomatization/terpene cyclization sequence to build up the stereochemically complex carbon framework of the merochlorins in one step. Inspired by the enzyme reactivity, a chemical chlorination protocol paralleling the biocatalytic process was developed. These chemical studies led to the identification of previously overlooked merochlorin natural products.


Assuntos
Cloreto Peroxidase/metabolismo , Sesterterpenos/biossíntese , Biocatálise , Ciclização , Oxirredução , Sesterterpenos/química , Estereoisomerismo
6.
Angew Chem Int Ed Engl ; 53(41): 11019-22, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25115835

RESUMO

The polycycles merochlorin A and B are complex halogenated meroterpenoid natural products with significant antibacterial activities and are produced by the marine bacterium Streptomyces sp. strain CNH-189. Heterologously produced enzymes and chemical synthesis are employed herein to fully reconstitute the merochlorin biosynthesis in vitro. The interplay of a dedicated type III polyketide synthase, a prenyl diphosphate synthase, and an aromatic prenyltransferase allow formation of a highly unusual aromatic polyketide-terpene hybrid intermediate which features an unprecedented branched sesquiterpene moiety from isosesquilavandulyl diphosphate. As supported by in vivo experiments, this precursor is furthermore chlorinated and cyclized to merochlorin A and isomeric merochlorin B by a single vanadium-dependent haloperoxidase, thus completing the remarkably efficient pathway.


Assuntos
Sesterterpenos/biossíntese , Proteínas de Bactérias/metabolismo , Ciclização , Hemiterpenos/química , Compostos Organofosforados/química , Sesterterpenos/química , Streptomyces/metabolismo , Terpenos/química
7.
ChemMedChem ; 19(2): e202300606, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37983645

RESUMO

Prostaglandin E2 (PGE2) plays a key role in various stages of cancer. PGE2 signals through the EP2 and the EP4 receptors, promoting tumorigenesis, metastasis, and/or immune suppression. Dual inhibition of both the EP2 and the EP4 receptors has the potential to counteract the effect of PGE2 and to result in antitumor efficacy. We herein disclose for the first time the structure of dual EP2/EP4 antagonists. By merging the scaffolds of EP2 selective and EP4 selective inhibitors, we generated a new chemical series of compounds blocking both receptors with comparable potency. In vitro and in vivo profiling suggests that the newly identified compounds are promising lead structures for further development into dual EP2/EP4 antagonists for use in cancer therapy.


Assuntos
Dinoprostona , Neoplasias , Humanos , Receptores de Prostaglandina E Subtipo EP2 , Receptores de Prostaglandina E Subtipo EP4
8.
J Am Chem Soc ; 135(23): 8500-3, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23688190

RESUMO

Gelsemoxonine (1) is a Gelsemium alkaloid incorporating an unusual azetidine. Its total synthesis was achieved employing a novel ring contraction of a spirocyclopropane isoxazolidine to furnish a ß-lactam intermediate. This ß-lactam ring was further elaborated into the azetidine of Gelsemoxonine. In addition, the synthesis includes a highly diastereoselective reductive Heck cyclization for the installation of the oxindole ring system as well as a directed hydrosilylation of an alkyne to access the ethyl ketone of the natural product.


Assuntos
Alcaloides Indólicos/síntese química , Alcaloides Indólicos/química , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
9.
J Med Chem ; 63(1): 88-102, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31804829

RESUMO

LpxC inhibitors were optimized starting from lead compounds with limited efficacy and solubility and with the goal to provide new options for the treatment of serious infections caused by Gram-negative pathogens in hospital settings. To enable the development of an aqueous formulation for intravenous administration of the drug at high dose, improvements in both solubility and antibacterial activity in vivo were prioritized early on. This lead optimization program resulted in the discovery of compounds such as 13 and 30, which exhibited high solubility and potent efficacy against Gram-negative pathogens in animal infection models.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Ácidos Hidroxâmicos/uso terapêutico , Administração Intravenosa , Animais , Antibacterianos/administração & dosagem , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Bactérias Gram-Negativas/efeitos dos fármacos , Hepatócitos/metabolismo , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ratos , Solubilidade
10.
J Med Chem ; 63(1): 66-87, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31804826

RESUMO

UDP-3-O-((R)-3-hydroxymyristoyl)-N-glucosamine deacetylase (LpxC) is as an attractive target for the discovery and development of novel antibacterial drugs to address the critical medical need created by multidrug resistant Gram-negative bacteria. By using a scaffold hopping approach on a known family of methylsulfone hydroxamate LpxC inhibitors, several hit series eliciting potent antibacterial activities against Enterobacteriaceae and Pseudomonas aeruginosa were identified. Subsequent hit-to-lead optimization, using cocrystal structures of inhibitors bound to Pseudomonas aeruginosa LpxC as guides, resulted in the discovery of multiple chemical series based on (i) isoindolin-1-ones, (ii) 4,5-dihydro-6H-thieno[2,3-c]pyrrol-6-ones, and (iii) 1,2-dihydro-3H-pyrrolo[1,2-c]imidazole-3-ones. Synthetic methods, antibacterial activities and relative binding affinities, as well as physicochemical properties that allowed compound prioritization are presented. Finally, in vivo properties of lead molecules which belong to the most promising pyrrolo-imidazolone series, such as 18d, are discussed.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Bactérias Gram-Negativas/efeitos dos fármacos , Ácidos Hidroxâmicos/uso terapêutico , Animais , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Escherichia coli/efeitos dos fármacos , Feminino , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/farmacocinética , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pirróis/síntese química , Pirróis/farmacocinética , Pirróis/uso terapêutico
11.
Nat Chem ; 9(12): 1235-1242, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29168495

RESUMO

Bacterial meroterpenoids constitute an important class of natural products with diverse biological properties and therapeutic potential. The biosynthetic logic for their production is unknown and defies explanation via classical biochemical paradigms. A large subgroup of naphthoquinone-based meroterpenoids exhibits a substitution pattern of the polyketide-derived aromatic core that seemingly contradicts the established reactivity pattern of polyketide phenol nucleophiles and terpene diphosphate electrophiles. We report the discovery of a hitherto unprecedented enzyme-promoted α-hydroxyketone rearrangement catalysed by vanadium-dependent haloperoxidases to account for these discrepancies in the merochlorin and napyradiomycin class of meroterpenoid antibiotics, and we demonstrate that the α-hydroxyketone rearrangement is potentially a conserved biosynthetic reaction in this molecular class. The biosynthetic α-hydroxyketone rearrangement was applied in a concise total synthesis of naphthomevalin, a prominent member of the napyradiomycin meroterpenes, and sheds further light on the mechanism of this unifying enzymatic transformation.


Assuntos
Naftoquinonas/metabolismo , Peroxidases/metabolismo , Terpenos/metabolismo , Estrutura Molecular , Naftoquinonas/química , Peroxidases/química , Terpenos/química , Termodinâmica
12.
Org Lett ; 17(18): 4452-5, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26333306

RESUMO

A chemoenzymatic approach to generate fully functional acyl coenzyme A molecules that are then used as substrates to drive in situ acyl transfer reactions is described. Mass spectrometry based assays to verify the identity of acyl coenzyme A enzymatic products are also illustrated. The approach is responsive to a diverse array of carboxylic acids that can be elaborated to their corresponding coenzyme A thioesters, with potential applications in wide-ranging chemical biology studies that utilize acyl coenzyme A substrates.


Assuntos
Acil Coenzima A/metabolismo , Proteínas/química , Ácidos Carboxílicos/química , Estrutura Molecular
14.
Org Lett ; 16(15): 3908-11, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25019948

RESUMO

A novel bioconjugation strategy is presented that relies on the coupling of diazonium terephthalates with amines in proteins. The diazonium captures the amine while the vicinal ester locks it through cyclization, ensuring no reversibility. The reaction is highly efficient and proceeds under mild conditions and short reaction times. Densely functionalized, complex natural products were directly coupled to proteins using low concentrations of coupling partners.


Assuntos
Aminas/química , Compostos de Diazônio/química , Proteínas/química , Ciclização , Estrutura Molecular
15.
Org Lett ; 16(3): 960-3, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24446767

RESUMO

A mechanistic study of the ring contraction of spirocyclopropane isoxazolidines to form ß-lactams is reported. Based on experimental and computational investigations, we propose a concerted mechanism that proceeds with retention of configuration during cyclopropane cleavage.


Assuntos
Ciclopropanos/química , Oxazóis/química , Compostos de Espiro/química , beta-Lactamas/síntese química , Catálise , Estrutura Molecular , Teoria Quântica , beta-Lactamas/química
16.
Org Lett ; 12(17): 3950-3, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20704315

RESUMO

The total synthesis of Microcin SF608 is reported. Access to the octahydroindole core structure of Microcin SF608 relies on the TMSOTf/NEt(3)-mediated opening of an oxabicyclic ring system. Additional highlights of the synthetic strategy that is reported include a highly regioselective epoxide reduction and photolytic excision of a 3 degrees alcohol.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Heptanos/química , Peptídeos/síntese química , Estrutura Molecular , Oxirredução , Peptídeos/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa