Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 91(1): 1105-1112, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30501198

RESUMO

Tools that provide absolute quantification of biomolecules, particularly of proteins and their post-translational modifications, without needing suitable specific standards, are urgently demanded nowadays. To this end, we have significantly improved the recently introduced strategy based on CH4 addition to the plasma for absolute quantification of biomolecules using HPLC-ICP-MS. Addition of CO2 has been optimized and finally selected as a safer, more efficient quantitative strategy that is able to provide constant (<6% error) signal response factor for the six elements assayed (S, P, As, Se, Br, I) under compromised conditions. In the particular case of absolute protein quantification, accuracy and precision attainable for S-based absolute determination of intact proteins using internal and external S-generic standards were compared. Potential for real sample analysis was demonstrated by the high-sensitivity analysis of toxins present in snake venoms. Finally, multielemental speciation capabilities of the approach have been also demonstrated through P and S simultaneous analysis in phosphoproteomics. Simultaneous accurate determination of both absolute protein amount and corresponding phosphorylation degree for intact ß-casein, and even impurity traces of κ and α-s1 isoforms present, has been successfully achieved using a simple mixture of inorganic P and S standards. The lowest detection limits (<1 fmol protein) ever published for S- and P-based intact protein quantification with ICP-MS are reported.


Assuntos
Fosfoproteínas/análise , Peçonhas/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Modelos Moleculares
2.
Anal Chem ; 88(19): 9699-9706, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27593495

RESUMO

Absolute protein quantification methods based on molecular mass spectrometry usually require stable isotope-labeled analogous standards for each target protein or peptide under study, which in turn must be certified using natural standards. In this work, we report a direct and accurate methodology based on capLC-ICP-QQQ and online isotope dilution analysis for the absolute and sensitive quantification of intact proteins. The combination of the postcolumn addition of 34S and a generic S-containing internal standard spiked to the sample provides full compound independent detector response and thus protein quantification without the need for specific standards. Quantitative recoveries, using a chromatographic core-shell C4 column for the various protein species assayed were obtained (96-100%). Thus, the proposed strategy enables the accurate quantification of proteins even if no specific standards are available for them. In addition, to the best of our knowledge, we obtained the lowest detection limits reported in the quantitative analysis of intact proteins by direct measurement of sulfur with ICPMS (358 fmol) and protein (ranging from 7 to 15 fmol depending on the assayed protein). The quantitative results for individual and simple mixtures of model proteins were statistically indistinguishable from the manufacturer's values. Finally, the suitability of the strategy for real sample analysis (including quantitative protein recovery from the column) was illustrated for the individual absolute quantification of the proteins and whole protein content in a venom sample. Parallel capLC-ESI-QTOF analysis was employed to identify the proteins, a prerequisite to translate the mass of quantified S for each chromatographic peak into individual protein mass.


Assuntos
Anticorpos Monoclonais/análise , Citocromos c/análise , Venenos Elapídicos/análise , Espectrometria de Massas , Soroalbumina Bovina/análise , Transferrina/análise , Animais , Bovinos , Citocromos c/metabolismo , Elapidae
3.
Anal Chem ; 84(14): 5851-7, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22725632

RESUMO

It is clear that sensitive and interference-free quantification of ICP-detectable elements naturally present in proteins will boost the role of ICPMS in proteomics. In this study, a completely new way of polyatomic interference removal in ICPMS for detection of sulfur (present in the majority of proteins as methionine or cysteine) and phosphorus (present in phosphorylated proteins) is presented. It is based on the concept of tandem mass spectrometry (QQQ) typically used in molecular MS. Briefly, the first quadrupole can be operated as 1 amu window band-pass mass filter to select target analyte ions ((31)P, (32)S, and their on-mass polyatomic interferences). In this way, only selected ions enter the cell and react with O(2), reducing the interferences produced by matrix ions as well as background noise. After optimization of the cell conditions, product ions formed for the targets, (47)PO(+) and (48)SO(+), could be detected with enhanced sensitivity and selectivity. The coupling to capillary HPLC allowed analysis of S- and P-containing species with the lowest detection limits ever published (11 and 6.6 fmol, respectively). The potential of the approach for proteomics studies was demonstrated for the highly sensitive simultaneous absolute quantification of different S-containing peptides and phosphopeptides.


Assuntos
Fosfoproteínas/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Acetonitrilas/química , Limite de Detecção , Fosfopeptídeos/metabolismo
4.
Talanta ; 206: 120221, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514872

RESUMO

The 236U/238U isotope ratio is a widely used tracer, which provides information on source identification for safeguard purposes, nuclear forensic studies and environmental monitoring. This paper describes an original approach to determine 236U/238U ratios, below 10-8, in environmental samples by combination of ICP-MS/MS for 236U/238U ratio and multiple collector ICPMS measurements for 235U/238U and 234U/235U isotope ratios. Since the hydride form of UO+ (UOH+) is less prone to occur than UH+, we were focused on the oxidised forms of uranium in order to reduce hydride based-interferences in ICP-MS/MS. Then, in-cell ion-molecule reactions with O2 and CO2 were assessed to detect the uranium isotopes in mass-shift mode (Q1: U+ → Q2: UO+). The performances in terms of UO+ sensitivity and minimisation of hydride form of UO+ were evaluated using five different desolvating systems. The best conditions, using an Apex Ω or an Aridus system, produced uranium oxide hydride rate (235U16O1H+/235U16O+) of about 10-7 with O2 in the collision cell. The method was validated through measurements of two certified IRMM standards with 236U/238U isotope ratio of 1.245 × 10-7 and 1.052 × 10-8, giving results in agreement with certified reference values. The relative standard deviations on seven independent measurements for each standard were respectively of 1.5% and 6.2%. Finally, environmental samples corresponding to sediments from the radioactive contamination plume emitted by the Fukushima Daiichi Nuclear Power Plant accident were analysed after a well-established uranium chemical separation procedure. 236U/238U atomic ratios between 1.5 × 10-8 and 7 × 10-9 were obtained with a level accuracy lower than 20%.

5.
Chemosphere ; 225: 849-858, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30904765

RESUMO

The Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in Japan resulted in a major release of radionuclides into the environment. Compared to other radionuclides, few studies have investigated the fate of actinides in the environment. Accordingly, this research investigates the Pu composition in soil samples collected in paddy fields before and after the accident. Furthermore, the vertical distributions of Pu and U isotopic signatures, along with 137Cs activities, were measured in a sediment core collected in the Mano Dam reservoir, in the Fukushima Prefecture. Changes in the relative contributions of the major actinide sources (global fallout or FDNPP derived fallout) were investigated in sediment deposited in the reservoir. The distinct peak observed for all Pu isotope ratios (240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu) and for 137Cs concentrations in the sediment core was attributed to the Fukushima fallout, and coincided with the maximum atomic contribution of only 4.8 ±â€¯1.0% of Pu from the FDNPP. Furthermore, 236U/238U ratios measured in the sediment core remained close to the global fallout signature indicating there was likely no U from the FDNPP accident detected in the sediment core. More research is required on the environmental dynamics of trace actinides in landscapes closer to the FDNPP where there are likely to be greater abundances of FDNPP-derived Pu and U.


Assuntos
Acidente Nuclear de Fukushima , Sedimentos Geológicos/química , Plutônio/análise , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Urânio/análise , Radioisótopos de Césio/análise , Japão , Centrais Nucleares , Poluentes Radioativos da Água/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa