Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cancer Ther ; 22(6): 765-777, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37042205

RESUMO

MET, the cell-surface receptor for the hepatocyte growth factor/scatter factor, which is widely overexpressed in various solid cancer types, is an attractive target for the development of antibody-based therapeutics. BYON3521 is a novel site-specifically conjugated duocarmycin-based antibody-drug conjugate (ADC), comprising a humanized cysteine-engineered IgG1 monoclonal antibody with low pmol/L binding affinity towards both human and cynomolgus MET. In vitro studies showed that BYON3521 internalizes efficiently upon MET binding and induces both target- and bystander-mediated cell killing. BYON3521 showed good potency and full efficacy in MET-amplified and high MET-expressing cancer cell lines; in moderate and low MET-expressing cancer cell lines good potencies and partial efficacy were observed. In mouse xenograft models, BYON3521 showed significant antitumor activity upon single-dose administration in multiple non-MET-amplified tumor types with low, moderate, and high MET expression, including complete tumor remissions in models with moderate MET expression. In the repeat-dose Good Laboratory Practice (GLP) safety assessment in cynomolgus monkeys, BYON3521 was well tolerated and based on the observed toxicities and their reversibility, the highest non-severely toxic dose was set at 15 mg/kg. A human pharmacokinetics (PK) model was derived from the PK data from the cynomolgus safety assessments, and the minimal efficacious dose in humans is estimated to be in the range of 3 to 4 mg/kg. In all, our nonclinical data suggests that BYON3521 is a safe ADC with potential for clinical benefit in patients. A first-in-human dose-escalation study is currently ongoing to determine the maximum tolerated dose and recommended dose for expansion (NCT05323045).


Assuntos
Anticorpos Monoclonais , Imunoconjugados , Animais , Humanos , Camundongos , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Imunoglobulina G , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Res ; 82(24): 4670-4679, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36222720

RESUMO

Antibody-drug conjugates (ADC) are antineoplastic agents recently introduced into the antitumor arsenal. T-DM1, a trastuzumab-based ADC that relies on lysosomal processing to release the payload, is approved for HER2-positive breast cancer. Next-generation ADCs targeting HER2, such as [vic-]trastuzumab duocarmazine (SYD985), bear linkers cleavable by lysosomal proteases and membrane-permeable drugs, mediating a bystander effect by which neighboring antigen-negative cells are eliminated. Many antitumor therapies, like DNA-damaging agents or CDK4/6 inhibitors, can induce senescence, a cellular state characterized by stable cell-cycle arrest. Another hallmark of cellular senescence is the enlargement of the lysosomal compartment. Given the relevance of the lysosome to the mechanism of action of ADCs, we hypothesized that therapies that induce senescence would potentiate the efficacy of HER2-targeting ADCs. Treatment with the DNA-damaging agent doxorubicin and CDK4/6 inhibitor induced lysosomal enlargement and senescence in several breast cancer cell lines. While senescence-inducing drugs did not increase the cytotoxic effect of ADCs on target cells, the bystander effect was enhanced when HER2-negative cells were cocultured with HER2-low cells. Knockdown experiments demonstrated the importance of cathepsin B in the enhanced bystander effect, suggesting that cathepsin B mediates linker cleavage. In breast cancer patient-derived xenografts, a combination treatment of CDK4/6 inhibitor and SYD985 showed improved antitumor effects over either treatment alone. These data support the strategy of combining next-generation ADCs targeting HER2 with senescence-inducing therapies for tumors with heterogenous and low HER2 expression. SIGNIFICANCE: Combining ADCs against HER2-positive breast cancers with therapies that induce cellular senescence may improve their therapeutic efficacy by facilitating a bystander effect against antigen-negative tumor cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Catepsina B/metabolismo , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais
3.
Cancers (Basel) ; 12(3)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183023

RESUMO

Trastuzumab-emtansine (T-DM1) is an antibody-drug conjugate (ADC) approved for the treatment of HER2 (human epidermal growth factor receptor 2)-positive breast cancer. T-DM1 consists of trastuzumab covalently linked to the cytotoxic maytansinoid DM1 via a non-cleavable linker. Despite its efficacy, primary or acquired resistance frequently develops, particularly in advanced stages of the disease. Second generation ADCs targeting HER2 are meant to supersede T-DM1 by using a cleavable linker and a more potent payload with a different mechanism of action. To determine the effect of one of these novel ADCs, SYD985, on tumors resistant to T-DM1, we developed several patient-derived models of resistance to T-DM1. Characterization of these models showed that previously described mechanisms-HER2 downmodulation, impairment of lysosomal function and upregulation of drug efflux pumps-account for the resistances observed, arguing that mechanisms of resistance to T-DM1 are limited, and most of them have already been described. Importantly, SYD985 was effective in these models, showing that the resistance to first generation ADCs can be overcome with an improved design.

4.
Arthritis Res Ther ; 12(3): R101, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20497523

RESUMO

INTRODUCTION: The immune modulatory role of estrogens in inflammation is complex. Both pro- and anti-inflammatory effects of estrogens have been described. Estrogens bind both estrogen receptor (ER)alpha and beta. The contribution of ERalpha and ERbeta to ER-mediated immune modulation was studied in delayed type hypersensitivity (DTH) and in experimental arthritis METHODS: ER-mediated suppression of rat adjuvant arthritis (AA) was studied using ethinyl-estradiol (EE) and a selective ERbeta agonist (ERB-79). Arthritis was followed for 2 weeks. Next, effects of ER agonists (ethinyl-estradiol, an ERalpha selective agonist (ERA-63) and a selective ERbeta agonist (ERB-79) on the development of a tetanus toxoid (TT)-specific delayed type hypersensitivity response in wild type (WT) and in ERalpha- or ERbeta-deficient mice were investigated. Finally, EE and ERA-63 were tested for their immune modulating potential in established collagen induced arthritis in DBA/1J mice. Arthritis was followed for three weeks. Joint pathology was examined by histology and radiology. Local synovial cytokine production was analyzed using Luminex technology. Sera were assessed for COMP as a biomarker of cartilage destruction. RESULTS: EE was found to suppress clinical signs and symptoms in rat AA. The selective ERbeta agonist ERB-79 had no effect on arthritis symptoms in this model. In the TT-specific DTH model, EE and the selective ERalpha agonist ERA-63 suppressed the TT-specific swelling response in WT and ERbetaKO mice but not in ERalphaKO mice. As seen in the AA model, the selective ERbeta agonist ERB-79 did not suppress inflammation. Treatment with EE or ERA-63 suppressed clinical signs in collagen induced arthritis (CIA) in WT mice. This was associated with reduced inflammatory infiltrates and decreased levels of proinflammatory cytokines in CIA joints. CONCLUSIONS: ERalpha, but not ERbeta, is key in ER-mediated suppression of experimental arthritis. It remains to be investigated how these findings translate to human autoimmune disease.


Assuntos
Artrite Experimental/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Inflamação/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/genética , Etinilestradiol/análogos & derivados , Etinilestradiol/uso terapêutico , Feminino , Hipersensibilidade Tardia/induzido quimicamente , Hipersensibilidade Tardia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Ratos , Membrana Sinovial/metabolismo , Toxoide Tetânico/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa