RESUMO
Humoral immune perturbations contribute to pathogenic outcomes in persons with HIV-1 infection (PWH). Gut barrier dysfunction in PWH is associated with microbial translocation and alterations in microbial communities (dysbiosis), and IgA, the most abundant immunoglobulin (Ig) isotype in the gut, is involved in gut homeostasis by interacting with the microbiome. We determined the impact of HIV-1 infection on the antibody repertoire in the gastrointestinal tract by comparing Ig gene utilization and somatic hypermutation (SHM) in colon biopsies from PWH (n = 19) versus age and sex-matched controls (n = 13). We correlated these Ig parameters with clinical, immunological, microbiome and virological data. Gene signatures of enhanced B cell activation were accompanied by skewed frequencies of multiple Ig Variable genes in PWH. PWH showed decreased frequencies of SHM in IgA and possibly IgG, with a substantial loss of highly mutated IgA sequences. The decline in IgA SHM in PWH correlated with gut CD4+ T cell loss and inversely correlated with mucosal inflammation and microbial translocation. Diminished gut IgA SHM in PWH was driven by transversion mutations at A or T deoxynucleotides, suggesting a defect not at the AID/APOBEC3 deamination step but at later stages of IgA SHM. These results expand our understanding of humoral immune perturbations in PWH that could have important implications in understanding mucosal immune defects in individuals with chronic HIV-1 infection. IMPORTANCE The gut is a major site of early HIV-1 replication and pathogenesis. Extensive CD4+ T cell depletion in this compartment results in a compromised epithelial barrier that facilitates the translocation of microbes into the underlying lamina propria and systemic circulation, resulting in chronic immune activation. To date, the consequences of microbial translocation on the mucosal humoral immune response (or vice versa) remains poorly integrated into the panoply of mucosal immune defects in PWH. We utilized next-generation sequencing approaches to profile the Ab repertoire and ascertain frequencies of somatic hypermutation in colon biopsies from antiretroviral therapy-naive PWH versus controls. Our findings identify perturbations in the Ab repertoire of PWH that could contribute to development or maintenance of dysbiosis. Moreover, IgA mutations significantly decreased in PWH and this was associated with adverse clinical outcomes. These data may provide insight into the mechanisms underlying impaired Ab-dependent gut homeostasis during chronic HIV-1 infection.
Assuntos
Trato Gastrointestinal , Infecções por HIV , Imunoglobulina A , Hipermutação Somática de Imunoglobulina , Disbiose , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/virologia , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1 , Humanos , Imunidade Humoral , Imunoglobulina A/genéticaRESUMO
Group 3 innate lymphoid cells (ILC3s) in the gut mucosa have long been thought to be noncytotoxic lymphocytes that are critical for homeostasis of intestinal epithelial cells through secretion of IL-22. Recent work using human tonsillar cells demonstrated that ILC3s exposed to exogenous inflammatory cytokines for a long period of time acquired expression of granzyme B, suggesting that under pathological conditions ILC3s may become cytotoxic. We hypothesized that inflammation associated with bacterial exposure might trigger granzyme B expression in gut ILC3s. To test this, we exposed human colon lamina propria mononuclear cells to a panel of enteric bacteria. We found that the Gram-negative commensal and pathogenic bacteria induced granzyme B expression in a subset of ILC3s that were distinct from IL-22-producing ILC3s. A fraction of granzyme B+ ILC3s coexpressed the cytolytic protein perforin. Granzyme B expression was mediated, in part, by IL-15 produced upon exposure to bacteria. ILC3s coexpressing all three IL-15R subunits (IL15Rα/ß/γ) increased following bacterial stimulation, potentially allowing for cis presentation of IL-15 during bacterial exposure. Additionally, a large frequency of colonic myeloid dendritic cells expressed IL-15Rα, implicating myeloid dendritic cells in trans presentation of IL-15 to ILC3s. Tonsillar ILC3s minimally expressed granzyme B when exposed to the same bacteria or to rIL-15. Overall, these data establish the novel, to our knowledge, finding that human colonic ILC3s can express granzyme B in response to a subset of enteric bacteria through a process mediated by IL-15. These observations raise new questions about the multifunctional role of human gut ILC3s.
Assuntos
Acinetobacter/imunologia , Granzimas/imunologia , Interleucina-15/imunologia , Linfócitos/imunologia , Ruminococcus/imunologia , Salmonella typhimurium/imunologia , Colo/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade Inata/imunologiaRESUMO
The Type I Interferons (IFN-Is) are innate antiviral cytokines that include 12 different IFNα subtypes and IFNß that signal through the IFN-I receptor (IFNAR), inducing hundreds of IFN-stimulated genes (ISGs) that comprise the 'interferome'. Quantitative differences in IFNAR binding correlate with antiviral activity, but whether IFN-Is exhibit qualitative differences remains controversial. Moreover, the IFN-I response is protective during acute HIV-1 infection, but likely pathogenic during the chronic stages. To gain a deeper understanding of the IFN-I response, we compared the interferomes of IFNα subtypes dominantly-expressed in HIV-1-exposed plasmacytoid dendritic cells (1, 2, 5, 8 and 14) and IFNß in the earliest cellular targets of HIV-1 infection. Primary gut CD4 T cells from 3 donors were treated for 18 hours ex vivo with individual IFN-Is normalized for IFNAR signaling strength. Of 1,969 IFN-regulated genes, 246 'core ISGs' were induced by all IFN-Is tested. However, many IFN-regulated genes were not shared between the IFNα subtypes despite similar induction of canonical antiviral ISGs such as ISG15, RSAD2 and MX1, formally demonstrating qualitative differences between the IFNα subtypes. Notably, IFNß induced a broader interferome than the individual IFNα subtypes. Since IFNß, and not IFNα, is upregulated during chronic HIV-1 infection in the gut, we compared core ISGs and IFNß-specific ISGs from colon pinch biopsies of HIV-1-uninfected (n = 13) versus age- and gender-matched, antiretroviral-therapy naïve persons with HIV-1 (PWH; n = 19). Core ISGs linked to inflammation, T cell activation and immune exhaustion were elevated in PWH, positively correlated with plasma lipopolysaccharide (LPS) levels and gut IFNß levels, and negatively correlated with gut CD4 T cell frequencies. In sharp contrast, IFNß-specific ISGs linked to protein translation and anti-inflammatory responses were significantly downregulated in PWH, negatively correlated with gut IFNß and LPS, and positively correlated with plasma IL6 and gut CD4 T cell frequencies. Our findings reveal qualitative differences in interferome induction by diverse IFN-Is and suggest potential mechanisms for how IFNß may drive HIV-1 pathogenesis in the gut.
Assuntos
Antivirais/farmacologia , Células Dendríticas/patologia , Trato Gastrointestinal/patologia , Infecções por HIV/patologia , HIV-1/efeitos dos fármacos , Interferon-alfa/farmacologia , Interferon beta/farmacologia , Adulto , Estudos de Casos e Controles , Células Dendríticas/efeitos dos fármacos , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Interferon-alfa/classificação , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
PURPOSE OF REVIEW: In the gastro-intestinal tract, the complex network of multiple innate cell populations play critical roles not only as a first line of defense against invading pathogens and in driving adaptive immune responses but also in maintaining intestinal homeostasis. Here, we describe the roles of various innate immune cell populations in gut immunity and detail studies investigating the impact of acute and chronic HIV infection on these cell populations. RECENT FINDINGS: Alterations in frequencies, phenotype and/or function of innate lymphoid cells, dendritic cells, macrophages, neutrophils, and innate-like T cells have been reported in people with HIV (PWH), with many of these features persisting despite anti-retroviral therapy and virological suppression. Dysregulated gut innate immunity in PWH is a feature of gut pathogenesis. A greater understanding of the mechanisms driving impairment in the multiple different gut innate immune cell populations and the downstream consequences of an altered innate immune response on host defense and gut homeostasis in PWH is needed to develop more effective HIV treatments and cure strategies.
Assuntos
Infecções por HIV , Imunidade Inata , Imunidade Adaptativa , Trato Gastrointestinal , Infecções por HIV/tratamento farmacológico , Humanos , Linfócitos , Linfócitos TRESUMO
BACKGROUND: The etiology of the low-level chronic inflammatory state associated with aging is likely multifactorial, but a number of animal and human studies have implicated a functional decline of the gastrointestinal immune system as a potential driver. Gut tissue-resident memory T cells play critical roles in mediating protective immunity and in maintaining gut homeostasis, yet few studies have investigated the effect of aging on human gut T cell immunity. To determine if aging impacted CD4 T cell immunity in the human large intestine, we utilized multi-color flow cytometry to measure colonic lamina propria (LP) CD4 T cell frequencies and immune-modulatory marker expression in younger (mean ± SEM: 38 ± 1.5 yrs) and older (77 ± 1.6 yrs) adults. To determine cellular specificity, we evaluated colon LP CD8 T cell frequency and phenotype in the same donors. To probe tissue specificity, we evaluated the same panel of markers in peripheral blood (PB) CD4 T cells in a separate cohort of similarly aged persons. RESULTS: Frequencies of colonic CD4 T cells as a fraction of total LP mononuclear cells were higher in older persons whereas absolute numbers of colonic LP CD4 T cells per gram of tissue were similar in both age groups. LP CD4 T cells from older versus younger persons exhibited reduced CTLA-4, PD-1 and Ki67 expression. Levels of Bcl-2, CD57, CD25 and percentages of activated CD38+HLA-DR+ CD4 T cells were similar in both age groups. In memory PB CD4 T cells, older age was only associated with increased CD57 expression. Significant age effects for LP CD8 T cells were only observed for CTLA-4 expression, with lower levels of expression observed on cells from older adults. CONCLUSIONS: Greater age was associated with reduced expression of the co-inhibitory receptors CTLA-4 and PD-1 on LP CD4 T cells. Colonic LP CD8 T cells from older persons also displayed reduced CTLA-4 expression. These age-associated profiles were not observed in older PB memory CD4 T cells. The decline in co-inhibitory receptor expression on colonic LP T cells may contribute to local and systemic inflammation via a reduced ability to limit ongoing T cell responses to enteric microbial challenge.
RESUMO
Global transcriptome studies can help pinpoint key cellular pathways exploited by viruses to replicate and cause pathogenesis. Previous data showed that laboratory-adapted HIV-1 triggers significant gene expression changes in CD4+ T cell lines and mitogen-activated CD4+ T cells from peripheral blood. However, HIV-1 primarily targets mucosal compartments during acute infection in vivo. Moreover, early HIV-1 infection causes extensive depletion of CD4+ T cells in the gastrointestinal tract that herald persistent inflammation due to the translocation of enteric microbes to the systemic circulation. Here, we profiled the transcriptome of primary intestinal CD4+ T cells infected ex vivo with transmitted/founder (TF) HIV-1. Infections were performed in the presence or absence of Prevotella stercorea, a gut microbe enriched in the mucosa of HIV-1-infected individuals that enhanced both TF HIV-1 replication and CD4+ T cell death ex vivo. In the absence of bacteria, HIV-1 triggered a cellular shutdown response involving the downregulation of HIV-1 reactome genes, while perturbing genes linked to OX40, PPAR and FOXO3 signaling. However, in the presence of bacteria, HIV-1 did not perturb these gene sets or pathways. Instead, HIV-1 enhanced granzyme expression and Th17 cell function, inhibited G1/S cell cycle checkpoint genes and triggered downstream cell death pathways in microbe-exposed gut CD4+ T cells. To gain insights on these differential effects, we profiled the gene expression landscape of HIV-1-uninfected gut CD4+ T cells exposed to bacteria. Microbial exposure upregulated genes involved in cellular proliferation, MAPK activation, Th17 cell differentiation and type I interferon signaling. Our findings reveal that microbial exposure influenced how HIV-1 altered the gut CD4+ T cell transcriptome, with potential consequences for HIV-1 susceptibility, cell survival and inflammation. The HIV-1- and microbe-altered pathways unraveled here may serve as a molecular blueprint to gain basic insights in mucosal HIV-1 pathogenesis.
Assuntos
Linfócitos T CD4-Positivos/microbiologia , Enterobacteriaceae , Infecções por HIV/microbiologia , HIV-1/patogenicidade , Intestinos/microbiologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , TranscriptomaRESUMO
The components of the human gut microbiome have been found to influence a broad array of pathologic conditions ranging from heart disease to diabetes and even to cancer. HIV infection upsets the delicate balance in the normal host-microbe interaction both through alterations in the taxonomic composition of gut microbial communities as well as through disruption of the normal host response mechanisms. In this article we review the current methods of gut microbiome analysis and the resulting data regarding how HIV infection might change the balance of commensal bacteria in the gut. Additionally, we cover the various effects gut microbes have on host immune homeostasis and the preliminary but intriguing data on how HIV disrupts those mechanisms. Finally, we briefly describe some of the important biomolecules produced by gut microbiota and the role that they may play in maintaining host immune homeostasis with and without HIV infection.
Assuntos
Microbioma Gastrointestinal/imunologia , Infecções por HIV/imunologia , Homeostase/imunologia , Imunidade nas Mucosas/imunologia , HumanosRESUMO
HIV-1 is transmitted primarily across mucosal surfaces and rapidly spreads within the intestinal mucosa during acute infection. The type I interferons (IFNs) likely serve as a first line of defense, but the relative expression and antiviral properties of the 12 IFNα subtypes against HIV-1 infection of mucosal tissues remain unknown. Here, we evaluated the expression of all IFNα subtypes in HIV-1-exposed plasmacytoid dendritic cells by next-generation sequencing. We then determined the relative antiviral potency of each IFNα subtype ex vivo using the human intestinal Lamina Propria Aggregate Culture model. IFNα subtype transcripts from the centromeric half of the IFNA gene complex were highly expressed in pDCs following HIV-1 exposure. There was an inverse relationship between IFNA subtype expression and potency. IFNα8, IFNα6 and IFNα14 were the most potent in restricting HIV-1 infection. IFNα2, the clinically-approved subtype, and IFNα1 were both highly expressed but exhibited relatively weak antiviral activity. The relative potencies correlated with binding affinity to the type I IFN receptor and the induction levels of HIV-1 restriction factors Mx2 and Tetherin/BST-2 but not APOBEC3G, F and D. However, despite the lack of APOBEC3 transcriptional induction, the higher relative potency of IFNα8 and IFNα14 correlated with stronger inhibition of virion infectivity, which is linked to deaminase-independent APOBEC3 restriction activity. By contrast, both potent (IFNα8) and weak (IFNα1) subtypes significantly induced HIV-1 GG-to-AG hypermutation. The results unravel non-redundant functions of the IFNα subtypes against HIV-1 infection, with strong implications for HIV-1 mucosal immunity, viral evolution and IFNα-based functional cure strategies.
Assuntos
Antivirais/farmacologia , Células Dendríticas/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , Interferon-alfa/imunologia , Replicação Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Humanos , Interferon-alfa/farmacologia , Vírion/metabolismoRESUMO
BACKGROUND: Early HIV-1 infection is characterized by high levels of HIV-1 replication and substantial CD4 T cell depletion in the intestinal mucosa, intestinal epithelial barrier breakdown, and microbial translocation. HIV-1-induced disruption of intestinal homeostasis has also been associated with changes in the intestinal microbiome that are linked to mucosal and systemic immune activation. In this study, we investigated the impact of representative bacterial species that were altered in the colonic mucosa of viremic HIV-1 infected individuals (HIV-altered mucosal bacteria; HAMB) on intestinal CD4 T cell function, infection by HIV-1, and survival in vitro. Lamina propria (LP) mononuclear cells were infected with CCR5-tropic HIV-1BaL or mock infected, exposed to high (3 gram-negative) or low (2 gram-positive) abundance HAMB or control gram-negative Escherichia coli and levels of productive HIV-1 infection and CD4 T cell depletion assessed. HAMB-associated changes in LP CD4 T cell activation, proliferation and HIV-1 co-receptor expression were also evaluated. RESULTS: The majority of HAMB increased HIV-1 infection and depletion of LP CD4 T cells, but gram-negative HAMB enhanced CD4 T cell infection to a greater degree than gram-positive HAMB. Most gram-negative HAMB enhanced T cell infection to levels similar to that induced by gram-negative E. coli despite lower induction of T cell activation and proliferation by HAMB. Both gram-negative HAMB and E. coli significantly increased expression of HIV-1 co-receptor CCR5 on LP CD4 T cells. Lipopolysaccharide, a gram-negative bacteria cell wall component, up-regulated CCR5 expression on LP CD4 T cells whereas gram-positive cell wall lipoteichoic acid did not. Upregulation of CCR5 by gram-negative HAMB was largely abrogated in CD4 T cell-enriched cultures suggesting an indirect mode of stimulation. CONCLUSIONS: Gram-negative commensal bacteria that are altered in abundance in the colonic mucosa of HIV-1 infected individuals have the capacity to enhance CCR5-tropic HIV-1 productive infection and depletion of LP CD4 T cells in vitro. Enhanced infection appears to be primarily mediated indirectly through increased expression of CCR5 on LP CD4 T cells without concomitant large scale T cell activation. This represents a novel mechanism potentially linking intestinal dysbiosis to HIV-1 mucosal pathogenesis.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Disbiose , Trato Gastrointestinal/microbiologia , Infecções por HIV/complicações , Infecções por HIV/imunologia , Imunidade nas Mucosas , Mucosa Intestinal/microbiologia , Adulto , Estudos Transversais , Feminino , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Early HIV-1 infection causes massive CD4+ T cell death in the gut and translocation of bacteria into the circulation. However, the programmed cell death (PCD) pathways used by HIV-1 to kill CD4+ T cells in the gut, and the impact of microbial exposure on T cell loss, remain unclear. Understanding mucosal HIV-1 triggered PCD could be advanced by an ex vivo system involving lamina propria mononuclear cells (LPMCs). We therefore modeled the interactions of gut LPMCs, CCR5-tropic HIV-1 and a commensal gut bacterial species, Escherichia coli. In this Lamina Propria Aggregate Culture (LPAC) model, LPMCs were infected with HIV-1BaL by spinoculation and cultured in the presence or absence of heat killed E.coli. CD4+ T cell numbers derived from flow cytometry and viable cell counts were reported relative to mock infection. Viable cells were identified by viability dye exclusion (AqVi), and intracellular HIV-1 Gag p24 protein was used to identify infected cells. Annexin V and AqVi were used to identify apoptotic versus necrotic cells. Caspase-1 and Caspase-3 activities were blocked using specific inhibitors YVAD and DEVD, respectively. RESULTS: CD4+ T cell depletion following HIV-1 infection was reproducibly observed by 6 days post infection (dpi). Depletion at 6 dpi strongly correlated with infection frequency at 4 dpi, was significantly blocked by Efavirenz treatment, and was primarily driven by p24-negative cells that were predominantly necrotic. HIV-1 infection significantly induced CD4+ T-cell intrinsic Caspase-1 activity, whereas Caspase-1 inhibition, but not Caspase-3 inhibition, significantly blocked CD4+ T cell depletion. Exposure to E.coli enhanced HIV-1 infection and CD4+ T depletion, and significantly increased the number of apoptotic p24+ cells. Notably, CD4+ T cell depletion in the presence of E.coli was partially blocked by Caspase-3, but not by Caspase-1 inhibition. CONCLUSIONS: In the LPAC model, HIV-1 induced Caspase-1 mediated pyroptosis in bystander CD4+ T cells, but microbial exposure shifted the PCD mechanism toward apoptosis of productively infected T cells. These results suggest that mucosal CD4+ T cell death pathways may be altered in HIV-infected individuals after gut barrier function is compromised, with potential consequences for mucosal inflammation, viral dissemination and systemic immune activation.
Assuntos
Apoptose , Linfócitos T CD4-Positivos/imunologia , Escherichia coli/imunologia , HIV-1/imunologia , Imunidade nas Mucosas , Contagem de Linfócito CD4 , Caspase 1/metabolismo , Sobrevivência Celular , Citometria de Fluxo , Humanos , Técnicas In Vitro , Mucosa/imunologiaRESUMO
The level of microbial translocation from the intestine is increased in HIV-1 infection. Proinflammatory cytokine production by peripheral antigen-presenting cells in response to translocated microbes or microbial products may contribute to systemic immune activation, a hallmark of HIV-1 infection. We investigated the cytokine responses of peripheral blood myeloid dendritic cells (mDCs) and monocytes to in vitro stimulation with commensal enteric Escherichia coli in peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected subjects and from uninfected controls. Levels of interleukin 23 (IL-23) produced by PBMC from HIV-1-infected subjects in response to E. coli stimulation were significantly higher than those produced by PBMC from uninfected subjects. IL-23 was produced primarily by CD16(+) monocytes. This subset of monocytes was increased in frequency and expressed higher levels of Toll-like receptor 4 (TLR4) in HIV-1-infected individuals than in controls. Blocking TLR4 on total CD14(+) monocytes reduced IL-23 production in response to E. coli stimulation. Levels of soluble CD27, an indicator of systemic immune activation, were elevated in HIV-1-infected subjects and were associated with the percentage of CD16(+) monocytes and the induction of IL-23 by E. coli, providing a link between these parameters and systemic inflammation. Taken together, these results suggest that IL-23 produced by CD16(+) monocytes in response to microbial stimulation may contribute to systemic immune activation in HIV-1-infected individuals.
Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Interleucina-23/imunologia , Monócitos/imunologia , Receptores de IgG/imunologia , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Células Dendríticas/imunologia , Escherichia coli/fisiologia , Infecções por Escherichia coli/etiologia , Infecções por Escherichia coli/microbiologia , Feminino , Proteínas Ligadas por GPI/imunologia , Infecções por HIV/complicações , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Interleucina-10 , Masculino , Pessoa de Meia-Idade , Receptor 4 Toll-Like/imunologia , Adulto JovemRESUMO
Microbial translocation has been linked to systemic immune activation in HIV-1 disease, yet mechanisms by which microbes may contribute to HIV-associated intestinal pathogenesis are poorly understood. Importantly, our understanding of the impact of translocating commensal intestinal bacteria on mucosal-associated T cell responses in the context of ongoing viral replication that occurs early in HIV-1 infection is limited. We previously identified commensal Escherichia coli-reactive Th1 and Th17 cells in normal human intestinal lamina propria (LP). In this article, we established an ex vivo assay to investigate the interactions between Th cell subsets in primary human LP mononuclear cells (LPMCs), commensal E. coli, and CCR5-tropic HIV-1(Bal). Addition of heat-killed E. coli to HIV-1-exposed LPMCs resulted in increases in HIV-1 replication, CD4 T cell activation and infection, and IL-17 and IFN-γ production. Conversely, purified LPS derived from commensal E. coli did not enhance CD4 T cell infection. E. coli exposure induced greater proliferation of LPMC Th17 than Th1 cells. Th17 cells were more permissive to infection than Th1 cells in HIV-1-exposed LPMC cultures, and Th17 cell infection frequencies significantly increased in the presence of E. coli. The E. coli-associated enhancement of infection was dependent on the presence of CD11c(+) LP dendritic cells and, in part, on MHC class II-restricted Ag presentation. These results highlight a potential role for translocating microbes in impacting mucosal HIV-1 pathogenesis during early infection by increasing HIV-1 replication and infection of intestinal Th1 and Th17 cells.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/virologia , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , HIV-1/imunologia , Mucosa Intestinal/imunologia , Adulto , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Infecções por Escherichia coli/patologia , Infecções por HIV/patologia , Humanos , Interleucina-17/biossíntese , Mucosa Intestinal/microbiologia , Mucosa Intestinal/virologia , Depleção Linfocítica , Replicação Viral/imunologiaRESUMO
BACKGROUND: Endogenous retroelements (EREs), including human endogenous retroviruses (HERVs) and long interspersed nuclear elements (LINEs), comprise almost half of the human genome. Our previous studies of the interferome in the gut suggest potential mechanisms regarding how IFNb may drive HIV-1 gut pathogenesis. As ERE activity is suggested to partake in type 1 immune responses and is incredibly sensitive to viral infections, we sought to elucidate underlying interactions between ERE expression and gut dynamics in people living with HIV-1 (PLWH). METHODS: ERE expression profiles from bulk RNA sequencing of colon biopsies and PBMC were compared between a cohort of PLWH not on antiretroviral therapy (ART) and uninfected controls. FINDINGS: 59 EREs were differentially expressed in the colon of PLWH when compared to uninfected controls (padj <0.05 and FC ≤ -1 or ≥ 1) [Wald's Test]. Of these 59, 12 EREs were downregulated in PLWH and 47 were upregulated. Colon expression of the ERE loci LTR19_12p13.31 and L1FLnI_1q23.1s showed significant correlations with certain gut immune cell subset frequencies in the colon. Furthermore L1FLnI_1q23.1s showed a significant upregulation in peripheral blood mononuclear cells (PBMCs) of PLWH when compared to uninfected controls suggesting a common mechanism of differential ERE expression in the colon and PBMC. INTERPRETATION: ERE activity has been largely understudied in genomic characterizations of human pathologies. We show that the activity of certain EREs in the colon of PLWH is deregulated, supporting our hypotheses that their underlying activity could function as (bio)markers and potential mediators of pathogenesis in HIV-1 reservoirs. FUNDING: US NIH grants NCI CA260691 (DFN) and NIAID UM1AI164559 (DFN).
Assuntos
Retrovirus Endógenos , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/virologia , Infecções por HIV/imunologia , Infecções por HIV/genética , HIV-1/genética , Retrovirus Endógenos/genética , Masculino , Feminino , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Adulto , Pessoa de Meia-Idade , Colo/metabolismo , Colo/virologia , Colo/patologia , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Microbioma GastrointestinalRESUMO
Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model we identify alterations in tryptophan metabolism, and specifically indole, that correlate with disease. We demonstrate that both bacteria and dietary tryptophan are required for disease, and indole supplementation is sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colon lymphocytes to indole increased expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a novel therapeutic pathway for RA and SpA.
RESUMO
Altered tryptophan catabolism has been identified in inflammatory diseases like rheumatoid arthritis (RA) and spondyloarthritis (SpA), but the causal mechanisms linking tryptophan metabolites to disease are unknown. Using the collagen-induced arthritis (CIA) model, we identified alterations in tryptophan metabolism, and specifically indole, that correlated with disease. We demonstrated that both bacteria and dietary tryptophan were required for disease and that indole supplementation was sufficient to induce disease in their absence. When mice with CIA on a low-tryptophan diet were supplemented with indole, we observed significant increases in serum IL-6, TNF, and IL-1ß; splenic RORγt+CD4+ T cells and ex vivo collagen-stimulated IL-17 production; and a pattern of anti-collagen antibody isotype switching and glycosylation that corresponded with increased complement fixation. IL-23 neutralization reduced disease severity in indole-induced CIA. Finally, exposure of human colonic lymphocytes to indole increased the expression of genes involved in IL-17 signaling and plasma cell activation. Altogether, we propose a mechanism by which intestinal dysbiosis during inflammatory arthritis results in altered tryptophan catabolism, leading to indole stimulation of arthritis development. Blockade of indole generation may present a unique therapeutic pathway for RA and SpA.
Assuntos
Artrite Experimental , Artrite Reumatoide , Microbiota , Camundongos , Humanos , Animais , Interleucina-17/genética , Interleucina-17/metabolismo , Triptofano , Artrite Reumatoide/genética , ColágenoRESUMO
Reduced frequencies of myeloid and plasmacytoid dendritic cell (DC) subsets (mDCs and pDCs, respectively) have been observed in the peripheral blood of HIV-1-infected individuals throughout the course of disease. Accumulation of DCs in lymph nodes (LNs) may partly account for the decreased numbers observed in blood, but increased DC death may also be a contributing factor. We used multiparameter flow cytometry to evaluate pro- and antiapoptotic markers in blood mDCs and pDCs from untreated HIV-1-infected donors, from a subset of infected donors before and after receiving antiretroviral therapy (ART), and from uninfected control donors. Blood mDCs, but not pDCs, from untreated HIV-1-infected donors expressed lower levels of antiapoptotic Bcl-2 than DCs from uninfected donors. A subset of HIV-1-infected donors had elevated frequencies of proapoptotic caspase-3(+) blood mDCs, and positive correlations were observed between caspase-3(+) mDC frequencies and plasma viral load and CD8(+) T-cell activation levels. Caspase-3(+) mDC frequencies, but not mDC Bcl-2 expression, were reduced with viral suppression on ART. Apoptosis markers on DCs in blood and LN samples from a cohort of untreated, HIV-1-infected donors with chronic disease were also evaluated. LN mDCs displayed higher levels of Bcl-2 and lower caspase-3(+) frequencies than did matched blood mDCs. Conversely, LN pDCs expressed lower Bcl-2 levels than their blood counterparts. In summary, blood mDCs from untreated HIV-1-infected subjects displayed a proapoptotic profile that was partially reversed with viral suppression, suggesting that DC death may be a factor contributing to blood DC depletion in the setting of chronic, untreated HIV disease.
Assuntos
Apoptose/fisiologia , Caspase 3/metabolismo , Células Dendríticas/imunologia , Células Mieloides/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Viremia/imunologia , Adulto , Células Dendríticas/fisiologia , Feminino , Genes bcl-2 , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1 , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Células Mieloides/fisiologia , Linfócitos T/imunologia , Carga Viral , Viremia/patologia , Viremia/virologia , Adulto JovemRESUMO
Intestinal dendritic cells (DCs) play key roles in mediating tolerance to commensal flora and inflammatory responses against mucosal pathogens. The mechanisms by which intestinal "conditioning" influences human DC responses to microbial stimuli remain poorly understood. Infections with viruses, such as HIV-1, that target mucosal tissue result in intestinal epithelial barrier breakdown and increased translocation of commensal bacteria into the lamina propria (LP). It is unclear whether innate LP DC responses to concurrent viral and bacterial stimuli influence mucosal HIV-1 pathogenesis. In this study, direct ex vivo phenotype and in vitro constitutive cytokine production of CD1c+ DCs in human intestinal LP were compared with those in peripheral blood (PB). To evaluate innate responses to viral and bacterial stimuli, intracellular cytokine production by LP and PB DCs following stimulation with ligands for TLRs 2, 4, 5, and 7/8 was evaluated. At steady state, LP CD1c+ DCs expressed higher levels of activation markers (CD40, CD83, CD86, HLA-DR, and CCR7) than did PB CD1c+ DCs, and higher frequencies of LP CD1c+ DCs constitutively produced IL-6 and -10 and TNF-alpha. LP DCs had blunted cytokine responses to TLR4 ligand and TLR5 ligand stimulation relative to PB DCs, yet similarly produced IL-10 in response to TLR2 ligand. Only synthetic TLR7/8 ligand, a mimic of viral ssRNA, induced IL-23 production by LP CD1c+ DCs, and this proinflammatory cytokine response was synergistically enhanced following combined TLR7/8 and TLR4 stimulation. These findings highlight a potential mechanism by which viruses like HIV-1 may subvert homeostatic mechanisms and induce inflammation in the intestinal mucosa.
Assuntos
Células Dendríticas/imunologia , Imunidade nas Mucosas/imunologia , Interleucina-23/biossíntese , Mucosa Intestinal/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Adulto , Idoso , Antígenos CD1/biossíntese , Antígenos CD1/imunologia , Diferenciação Celular/imunologia , Separação Celular , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Citometria de Fluxo , Glicoproteínas/biossíntese , Glicoproteínas/imunologia , Humanos , Tolerância Imunológica/imunologia , Interleucina-23/imunologia , Mucosa Intestinal/microbiologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto JovemRESUMO
Chronic HIV-1 infection results in the sustained disruption of gut homeostasis culminating in alterations in microbial communities (dysbiosis) and increased microbial translocation. Major questions remain on how interactions between translocating microbes and gut immune cells impact HIV-1-associated gut pathogenesis. We previously reported that in vitro exposure of human gut cells to enteric commensal bacteria upregulated the serine protease and cytotoxic marker Granzyme B (GZB) in CD4 T cells, and GZB expression was further increased in HIV-1-infected CD4 T cells. To determine if these in vitro findings extend in vivo, we evaluated the frequencies of GZB+ CD4 T cells in colon biopsies and peripheral blood of untreated, chronically infected people with HIV-1 (PWH). Colon and blood GZB+ CD4 T cells were found at significantly higher frequencies in PWH. Colon, but not blood, GZB+ CD4 T cell frequencies were associated with gut and systemic T cell activation and Prevotella species abundance. In vitro, commensal bacteria upregulated GZB more readily in gut versus blood or tonsil-derived CD4 T cells, particularly in inflammatory T helper 17 cells. Bacteria-induced GZB expression in gut CD4 T cells required the presence of accessory cells, the IL-2 pathway and in part, MHC Class II. Overall, we demonstrate that GZB+ CD4 T cells are prevalent in the colon during chronic HIV-1 infection and may emerge following interactions with translocated bacteria in an IL-2 and MHC Class II-dependent manner. Associations between GZB+ CD4 T cells, dysbiosis and T cell activation suggest that GZB+ CD4 T cells may contribute to gut HIV-1 pathogenesis.
Assuntos
Microbioma Gastrointestinal , Infecções por HIV , HIV-1 , Bactérias/genética , Linfócitos T CD4-Positivos , Colo/patologia , Disbiose/complicações , Granzimas , Humanos , Interleucina-2RESUMO
An important function of the gut microbiome is the fermentation of non-digestible dietary fibers into short chain fatty acids (SCFAs). The three primary SCFAs: acetate, propionate, and butyrate, are key mediators of metabolism and immune cell function in the gut mucosa. We previously demonstrated that butyrate at high concentrations decreased human gut lamina propria (LP) CD4 T cell activation in response to enteric bacteria exposure in vitro. However, to date, the mechanism by which butyrate alters human gut LP CD4 T cell activation remains unknown. In this current study, we sought to better understand how exposure to SCFAs across a concentration range impacted human gut LP CD4 T cell function and activation. LP CD4 T cells were directly activated with T cell receptor (TCR) beads in vitro in the presence of a physiologic concentration range of each of the primary SCFAs. Exposure to butyrate potently inhibited CD4 T cell activation, proliferation, and cytokine (IFNγ, IL-17) production in a concentration dependent manner. Butyrate decreased the proliferation and cytokine production of T helper (Th) 1, Th17 and Th22 cells, with differences noted in the sensitivity of LP versus peripheral blood Th cells to butyrate's effects. Higher concentrations of propionate and acetate relative to butyrate were required to inhibit CD4 T cell activation and proliferation. Butyrate directly increased the acetylation of both unstimulated and TCR-stimulated CD4 T cells, and apicidin, a Class I histone deacetylase inhibitor, phenocopied butyrate's effects on CD4 T cell proliferation and activation. GPR43 agonism phenocopied butyrate's effect on CD4 T cell proliferation whereas a GPR109a agonist did not. Our findings indicate that butyrate decreases in vitro human gut LP CD4 T cell activation, proliferation, and inflammatory cytokine production more potently than other SCFAs, likely through butyrate's ability to increase histone acetylation, and potentially via signaling through GPR43. These findings have relevance in furthering our understanding of how perturbations of the gut microbiome alter local immune responses in the gut mucosa.
Assuntos
Butiratos/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Mucosa Intestinal/citologia , Acetatos/farmacologia , Acetilação/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Histonas/imunologia , Humanos , Mucosa Intestinal/imunologia , Propionatos/farmacologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Superfície Celular/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Impairments in physical function and increased systemic levels of inflammation have been observed in middle-aged and older persons with HIV (PWH). We previously demonstrated that in older persons, associations between gut microbiota and inflammation differed by HIV serostatus. To determine whether relationships between the gut microbiome and physical function measurements would also be distinct between older persons with and without HIV, we reanalyzed existing gut microbiome and short chain fatty acid (SCFA) data in conjunction with previously collected measurements of physical function and body composition from the same cohorts of older (51-74 years), nonfrail PWH receiving effective antiretroviral therapy (N = 14) and age-balanced uninfected controls (N = 22). Associations between relative abundance (RA) of the most abundant bacterial taxa or stool SCFA levels with physical function and body composition were tested using HIV-adjusted linear regression models. In older PWH, but not in controls, greater RA of Alistipes, Escherichia, Prevotella, Megasphaera, and Subdoligranulum were associated with reduced lower extremity muscle function, decreased lean mass, or lower Short Physical Performance Battery (SPPB) scores. Conversely, greater RA of Dorea, Coprococcus, and Phascolarctobacterium in older PWH were associated with better muscle function, lean mass, and SPPB scores. Higher levels of the SCFA butyrate associated with increased grip strength in both PWH and controls. Our findings indicate that in older PWH, both negative and positive associations exist between stool microbiota abundance and physical function. Different relationships were observed in older uninfected persons, suggesting features of a unique gut-physical function axis in PWH.