Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125678

RESUMO

Moringa oleifera is widely grown throughout the tropics and increasingly used for its therapeutic and nutraceutical properties. These properties are attributed to potent antioxidant and metabolism regulators, including glucosinolates/isothiocyanates as well as flavonoids, polyphenols, and phenolic acids. Research to date largely consists of geographically limited studies that only examine material available locally. These practices make it unclear as to whether moringa samples from one area are superior to another, which would require identifying superior variants and distributing them globally. Alternatively, the finding that globally cultivated moringa material is essentially functionally equivalent means that users can easily sample material available locally. We brought together accessions of Moringa oleifera from four continents and nine countries and grew them together in a common garden. We performed a metabolomic analysis of leaf extracts (MOLE) using an LC-MSMS ZenoTOF 7600 mass spectrometry system. The antioxidant capacity of leaf samples evaluated using the Total Antioxidant Capacity assay did not show any significant difference between extracts. MOLE samples were then tested for their antioxidant activity on C2C12 myotubes challenged with an oxidative insult. Hydrogen peroxide (H2O2) was added to the myotubes after pretreatment with different extracts. H2O2 exposure caused an increase in cell death that was diminished in all samples pretreated with moringa extracts. Our results show that Moringa oleifera leaf extract is effective in reducing the damaging effect of H2O2 in C2C12 myotubes irrespective of geographical origin. These results are encouraging because they suggest that the use of moringa for its therapeutic benefits can proceed without the need for the lengthy and complex global exchange of materials between regions.


Assuntos
Antioxidantes , Metabolômica , Moringa oleifera , Fibras Musculares Esqueléticas , Extratos Vegetais , Folhas de Planta , Moringa oleifera/química , Moringa oleifera/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Metabolômica/métodos , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Linhagem Celular , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
2.
Int J Mol Sci ; 25(16)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39201283

RESUMO

Biological age, reflecting the cumulative damage in the body over a lifespan, is a dynamic measure more indicative of individual health than chronological age. Accelerated aging, when biological age surpasses chronological age, is implicated in poorer clinical outcomes, especially for breast cancer (BC) survivors undergoing treatments. This preliminary study investigates the impact of a 16-week online supervised physical activity (PA) intervention on biological age in post-surgery female BC patients. Telomere length was measured using qPCR, and the ELOVL2-based epigenetic clock was assessed via DNA methylation pyrosequencing of the ELOVL2 promoter region. Telomere length remained unchanged, but the ELOVL2 epigenetic clock indicated a significant decrease in biological age in the PA group, suggesting the potential of PA interventions to reverse accelerated aging processes in BC survivors. The exercise group showed improved cardiovascular fitness, highlighting PA's health impact. Finally, the reduction in biological age, as measured by the ELOVL2 epigenetic clock, was significantly associated with improvements in cardiovascular fitness and handgrip strength, supporting improved recovery. Epigenetic clocks can potentially assess health status and recovery progress in BC patients, identifying at-risk individuals in clinical practice. This study provides potential and valuable insights into how PA benefits BC survivors' health, supporting the immediate benefits of a 16-week exercise intervention in mitigating accelerated aging. The findings could suggest a holistic approach to improving the health and recovery of post-surgery BC patients.


Assuntos
Envelhecimento , Neoplasias da Mama , Metilação de DNA , Epigênese Genética , Exercício Físico , Elongases de Ácidos Graxos , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Pessoa de Meia-Idade , Envelhecimento/genética , Elongases de Ácidos Graxos/genética , Idoso , Adulto , Regiões Promotoras Genéticas , Telômero/genética
3.
Int J Sports Med ; 44(10): 704-710, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429319

RESUMO

Thyroid hormones play a crucial role in skeletal muscle development, suggesting that thyroid function may influence muscle mass and muscle strength, which are both fundamental health-related indicators of several age-related consequences. However, whether there is a relationship between thyroid hormones, muscle mass, and muscle strength in individuals without thyroid dysfunctions is still unknown. Therefore, this systematic review aims to investigate whether thyroid hormones are related to muscle mass and strength parameters in euthyroid individuals. Three databases were searched (PubMed, Scopus, Web of Science) up to February 14, 2022, for peer-reviewed papers published in English. The search results were conducted independently by two different reviewers. The review included 13 studies with a total of 241,044 participants. All studies were observational: twelve studies measured thyroid stimulating hormone, ten and thirteen studies measured free triiodothyronine and free thyroxine, four studies analyzed the thyroid hormone ratio. The assessment methods for muscle mass were computed tomography, dual-energy X-ray absorptiometry and bioimpedance analysis, whereas hand dynamometer for muscle strength. Low levels within the normal range of free triiodothyronine, high levels within the normal range of free thyroxine, and lower thyroid hormone ratio may contribute to a reduced muscle function, which seems more evident in older males.


Assuntos
Tiroxina , Tri-Iodotironina , Masculino , Humanos , Idoso , Hormônios Tireóideos , Tireotropina , Músculos
4.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139211

RESUMO

Gender-related methodology in biomedical sciences receives considerable attention, with numerous studies highlighting biological differences between cisgender males and females. These differences influence the clinical symptoms of various diseases and impact therapeutic approaches. In this in vitro study, we investigate the potential role of sex-chromosome-related dimorphism on steroidogenic enzymes, androgen receptor (AR) expression, and cellular translocation in primary human skeletal muscle cells before and after exposure to testosterone. We analyzed 46XY and 46XX cells for 17ß-hydroxysteroid dehydrogenase (17ß-HSD), 5α-reductase (5α-R2), aromatase (Cyp-19), and AR gene expression. We also compared AR expression and intracellular translocation after increasing exposure to testosterone. At baseline, we observed higher mRNA expression for 5α-R2 and AR in 46XY cells and higher Cyp-19 mRNA expression in 46XX cells. Following testosterone exposure, we observed an increase in AR expression and translocation in 46XX cells, even at the lowest dose of 0.5 nM, while significant changes in 46XY cells were observed only from 10 nM. Our in vitro results demonstrate that the diverse sex chromosome assets reflect important differences in muscle steroidogenesis. They support the concept that chromosomal disparities between males and females, even in vitro, lead to pivotal variations in cellular physiology and response. This understanding represents a crucial starting point in gender medicine, ensuring a precise approach in clinical practice, sports, and exercise settings and facilitating the translation of in vitro data to in vivo applicability.


Assuntos
Receptores Androgênicos , Testosterona , Masculino , Feminino , Humanos , Testosterona/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Caracteres Sexuais , Androgênios/metabolismo , Oxirredutases/metabolismo , Colestenona 5 alfa-Redutase/genética , Músculo Esquelético/metabolismo , Cromossomos Sexuais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
FASEB J ; 35(2): e21328, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33433932

RESUMO

To date, there are limited and incomplete data on possible sex-based differences in fiber-types of skeletal muscle and their response to physical exercise. Adult healthy male and female mice completed a single bout of endurance exercise to examine the sex-based differences of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), heat shock protein 60 (Hsp60), interleukin 6 (IL-6) expression, as well as the Myosin Heavy Chain (MHC) fiber-type distribution in soleus and extensor digitorum longus (EDL) muscles. Our results showed for the first time that in male soleus, a muscle rich of type IIa fibers, endurance exercise activates specifically genes involved in mitochondrial biogenesis such as PGC1 α1 isoform, Hsp60 and IL-6, whereas the expression of PGC1 α2 and α3 was significantly upregulated in EDL muscle, a fast-twitch skeletal muscle, independently from the gender. Moreover, we found that the acute response of different PGC1α isoforms was muscle and gender dependent. These findings add a new piece to the huge puzzle of muscle response to physical exercise. Given the importance of these genes in the physiological response of the muscle to exercise, we strongly believe that our data could support future research studies to personalize a specific and sex-based exercise training protocol.


Assuntos
Atividade Motora , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Chaperonina 60/genética , Chaperonina 60/metabolismo , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores Sexuais
6.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232289

RESUMO

A central feature of the skeletal muscle is its ability to regenerate through the activation, by environmental signals, of satellite cells. Once activated, these cells proliferate as myoblasts, and defects in this process profoundly affect the subsequent process of regeneration. High levels of reactive oxygen species such as hydrogen peroxide (H2O2) with the consequent formation of oxidized macromolecules increase myoblasts' cell death and strongly contribute to the loss of myoblast function. Recently, particular interest has turned towards the beneficial effects on muscle of the naturally occurring polyamine spermidine (Spd). In this work, we tested the hypothesis that Spd, upon oxidative challenge, would restore the compromised myoblasts' viability and redox status. The effects of Spd in combination with aminoguanidine (Spd-AG), an inhibitor of bovine serum amine oxidase, on murine C2C12 myoblasts treated with a mild dose of H2O2 were evaluated by analyzing: (i) myoblast viability and recovery from wound scratch; (ii) redox status and (iii) polyamine (PAs) metabolism. The treatment of C2C12 myoblasts with Spd-AG increased cell number and accelerated scratch wound closure, while H2O2 exposure caused redox status imbalance and cell death. The combined treatment with Spd-AG showed an antioxidant effect on C2C12 myoblasts, partially restoring cellular total antioxidant capacity, reducing the oxidized glutathione (GSH/GSSG) ratio and increasing cell viability through a reduction in cell death. Moreover, Spd-AG administration counteracted the induction of polyamine catabolic genes and PA content decreased due to H2O2 challenges. In conclusion, our data suggest that Spd treatment has a protective role in skeletal muscle cells by restoring redox balance and promoting recovery from wound scratches, thus making myoblasts able to better cope with an oxidative insult.


Assuntos
Peróxido de Hidrogênio , Espermidina , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Proliferação de Células , Dissulfeto de Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Camundongos , Mioblastos/metabolismo , Oxirredução , Oxirredutases/metabolismo , Poliaminas/metabolismo , Poliaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espermidina/metabolismo , Espermidina/farmacologia
7.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743011

RESUMO

Skeletal muscle is a tissue that has recently been recognized for its ability to produce androgens under physiological conditions. The steroidogenesis process is known to be negatively influenced by reactive oxygen species (ROS) in reproductive Leydig and ovary cells, while their effect on muscle steroidogenesis is still an unexplored field. Muscle cells are continuously exposed to ROS, resulting from both their metabolic activity and the surrounding environment. Interestingly, the regulation of signaling pathways, induced by mild ROS levels, plays an important role in muscle fiber adaptation to exercise, in a process that also elicits a significant modulation in the hormonal response. The aim of the present study was to investigate whether ROS could influence steroidogenesis in skeletal muscle cells by evaluating the release of testosterone (T) and dihydrotestosterone (DHT), as well as the evaluation of the relative expression of the key steroidogenic enzymes 5α-reductase, 3ß-hydroxysteroid dehydrogenase (HSD), 17ß-HSD, and aromatase. C2C12 mouse myotubes were exposed to a non-cytotoxic concentration of hydrogen peroxide (H2O2), a condition intended to reproduce, in vitro, one of the main stimuli linked to the process of homeostasis and adaptation induced by exercise in skeletal muscle. Moreover, the influence of tadalafil (TAD), a phosphodiesterase 5 inhibitor (PDE5i) originally used to treat erectile dysfunction but often misused among athletes as a "performance-enhancing" drug, was evaluated in a single treatment or in combination with H2O2. Our data showed that a mild hydrogen peroxide exposure induced the release of DHT, but not T, and modulated the expression of the enzymes involved in steroidogenesis, while TAD treatment significantly reduced the H2O2-induced DHT release. This study adds a new piece of information about the adaptive skeletal muscle cell response to an oxidative environment, revealing that hydrogen peroxide plays an important role in activating muscle steroidogenesis.


Assuntos
Di-Hidrotestosterona , Peróxido de Hidrogênio , Animais , Di-Hidrotestosterona/metabolismo , Di-Hidrotestosterona/farmacologia , Feminino , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testosterona/metabolismo
8.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164412

RESUMO

HSPB5 or alpha B-crystallin (CRYAB), originally identified as lens protein, is one of the most widespread and represented of the human small heat shock proteins (sHSPs). It is greatly expressed in tissue with high rates of oxidative metabolism, such as skeletal and cardiac muscles, where HSPB5 dysfunction is associated with a plethora of human diseases. Since HSPB5 has a major role in protecting muscle tissues from the alterations of protein stability (i.e., microfilaments, microtubules, and intermediate filament components), it is not surprising that this sHSP is specifically modulated by exercise. Considering the robust content and the protective function of HSPB5 in striated muscle tissues, as well as its specific response to muscle contraction, it is then realistic to predict a specific role for exercise-induced modulation of HSPB5 in the prevention of muscle diseases caused by protein misfolding. After offering an overview of the current knowledge on HSPB5 structure and function in muscle, this review aims to introduce the reader to the capacity that different exercise modalities have to induce and/or activate HSPB5 to levels sufficient to confer protection, with the potential to prevent or delay skeletal and cardiac muscle disorders.


Assuntos
Exercício Físico , Cardiopatias/metabolismo , Doenças Musculares/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Cardiopatias/patologia , Cardiopatias/prevenção & controle , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/patologia , Doenças Musculares/prevenção & controle , Miocárdio/metabolismo , Miocárdio/patologia , Fatores de Proteção
9.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443628

RESUMO

Moringa oleifera is a multi-purpose herbal plant with numerous health benefits. In skeletal muscle cells, Moringa oleifera leaf extract (MOLE) acts by increasing the oxidative metabolism through the SIRT1-PPARα pathway. SIRT1, besides being a critical energy sensor, is involved in the activation related to redox homeostasis of transcription factors such as the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present study was to evaluate in vitro the capacity of MOLE to influence the redox status in C2C12 myotubes through the modulation of the total antioxidant capacity (TAC), glutathione levels, Nrf2 and its target gene heme oxygenase-1 (HO-1) expression, as well as enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and transferase (GST). Moreover, the impact of MOLE supplementation on lipid peroxidation and oxidative damage (i.e., TBARS and protein carbonyls) was evaluated. Our results highlight for the first time that MOLE increased not only Nrf2 and HO-1 protein levels in a dose-dependent manner, but also improved glutathione redox homeostasis and the enzyme activities of CAT, SOD, GPx and GST. Therefore, it is intriguing to speculate that MOLE supplementation could represent a valuable nutrition for the health of skeletal muscles.


Assuntos
Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Moringa oleifera/química , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Regulação para Cima/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Homeostase/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo
10.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365773

RESUMO

Oxidative stress linked to vascular damage plays an important role in the pathogenesis of systemic sclerosis (SSc). Indeed, vascular damage at nailfold capillaroscopy in patients with Raynaud's Phenomenon (RP) is a major risk factor for the development of SSc together with the presence of specific autoantiobodies. Here, we investigated the effects of the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil, currently used in the management of RP, in modulating the proinflammatory response of dermal fibroblasts to oxidative stress in vitro. Human fibroblasts isolated from SSc patients and healthy controls were exposed to exogenous reactive oxygen species (ROS) (100 µM H2O2), in the presence or absence of sildenafil (1 µM). Treatment with sildenafil significantly reduced dermal fibroblast gene expression and cellular release of IL-6, known to play a central role in the pathogenesis of tissue damage in SSc and IL-8, directly induced by ROS. This reduction was associated with suppression of STAT3-, ERK-, NF-κB-, and PKB/AKT-dependent pathways. Our findings support the notion that the employment of PDE5i in the management of RP may be explored for its efficacy in modulating the oxidative stress-induced proinflammatory activation of dermal fibroblasts in vivo and may ultimately aid in the prevention of tissue damage caused by SSc.


Assuntos
Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Interleucina-6/genética , Interleucina-8/genética , Inibidores da Fosfodiesterase 5/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Citrato de Sildenafila/farmacologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Transcrição Gênica
11.
Chin J Physiol ; 62(6): 261-266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31793462

RESUMO

Cardiovascular disease prevails with age which varies according to sex. Telomere length plays an important role in aging. Despite the great benefits of high-intensity interval training (HIIT), the acute responses to HIIT with different intervals have not been elucidated in different sexes. This study was conducted to investigate the sex-dependent responses of telomerase enzyme activity, total oxidant status (TOS), total antioxidant capacity (TAC), and the ratio of TAC/TOS to short- and long-term high-intensity interval exercise (HIIE) in cardiac muscle of male and female rats. Forty adult Wistar rats were randomly allocated to six groups: male and female HIIE with short-term intervals (MHIIESh and FHIIESh, respectively), male and female HIIE with long-term intervals (MHIIEL and FHIIEL, respectively), and controls groups. Telomerase activity, TAC, and TOS levels were examined immediately after exercise in the cardiac muscle. The level of telomerase enzyme activity, TOS level, and the ratio of TAC/TOS did not change after HIIE with short-term interval and HIIE with long-term interval (HIIEL) in male and female rats (P = 0.52, 0.69, and 0.08, respectively). There was a statistically significant decrease in the TAC level in the MHIIESh group (P = 0.04). Furthermore, a significant decrease was observed in the HIIEL in both male and female rats (P = 0.03 and 0.04, respectively). Acute exposure to HIIE with short- and long-term intervals would not result in a significant change in some indicators of biological aging. However, due to gender-specific biological differences, further studies will provide evidence regarding the roles of HIIE at different times of intervals, which contribute to aging prevention.


Assuntos
Caracteres Sexuais , Envelhecimento , Animais , Antioxidantes , Feminino , Masculino , Miocárdio , Oxidantes , Ratos , Ratos Wistar , Telomerase
12.
Res Sports Med ; 27(2): 147-165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30596287

RESUMO

Supplementation with antioxidants received interest as suitable tool for preventing or reducing exercise-related oxidative stress possibly leading to improvement of sport performance in athletes. To date, it is difficult to reach a conclusion on the relevance of antioxidants supplementation in athletes and/or well-trained people. The general picture that emerges from the available data indicates that antioxidants requirement can be covered by dosage equal or close to the recommended dietary allowance (RDA) provided by consumption of a balanced, well-diversified diet. Nevertheless, it remains open the possibility that in specific context, such as in sports characterized by high intensity and/or exhaustive regimes, supplementation with antioxidants could be appropriated to avoid or reduce the damaging effect of these type of exercise. This review will discuss the findings of a number of key studies on the advantages and/or disadvantages for athletes of using antioxidants supplementation, either individually or in combination.


Assuntos
Antioxidantes/administração & dosagem , Atletas , Desempenho Atlético/fisiologia , Exercício Físico/fisiologia , Homeostase/efeitos dos fármacos , Músculo Esquelético/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Oxirredução
13.
BMC Genomics ; 18(Suppl 8): 802, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143608

RESUMO

Epigenetic modification refers to heritable changes in gene function that cannot be explained by alterations in the DNA sequence. The current literature clearly demonstrates that the epigenetic response is highly dynamic and influenced by different biological and environmental factors such as aging, nutrient availability and physical exercise. As such, it is well accepted that physical activity and exercise can modulate gene expression through epigenetic alternations although the type and duration of exercise eliciting specific epigenetic effects that can result in health benefits and prevent chronic diseases remains to be determined. This review highlights the most significant findings from epigenetic studies involving physical activity/exercise interventions known to benefit chronic diseases such as metabolic syndrome, diabetes, cancer, cardiovascular and neurodegenerative diseases.


Assuntos
Doença/genética , Epigênese Genética , Exercício Físico , Medicina Preventiva , Humanos
14.
Free Radic Biol Med ; 213: 113-122, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242245

RESUMO

The evidence for physical activity (PA) as a major public health preventive approach and a potent medical therapy has increased exponentially in the last decades. The biomolecular mechanisms supporting the associations between PA and/or structured exercise training with health maintenance and disease prevention are not completely characterized. However, increasing evidence pointed out the role of epigenetic modifications in exercise adaptation and health-enhancing PA throughout life, DNA methylation being the most intensely studied epigenetic modification induced by acute and chronic exercise. The current data on the modulation of DNA methylation determined by physically active behavior or exercise interventions points out genes related to energy regulation, mitochondrial function, and biosynthesis, as well as muscle regeneration, calcium signaling pathways, and brain plasticity, all consistent with the known exercise-induced redox signaling and/or reactive oxygen species (ROS) unbalance. Thus, the main focus of this review is to discuss the role of ROS and redox-signaling on DNA methylation profile and its impact on exercise-induced health benefits in humans.


Assuntos
Metilação de DNA , Exercício Físico , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Exercício Físico/fisiologia , Epigênese Genética
15.
Biology (Basel) ; 13(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39336127

RESUMO

Cancer remains a major challenge in medicine, prompting exploration of innovative therapies. Recent studies suggest that exercise-derived extracellular vesicles (EVs) may offer potential anti-cancer benefits. These small, membrane-bound particles, including exosomes, carry bioactive molecules such as proteins and RNA that mediate intercellular communication. Exercise has been shown to increase EV secretion, influencing physiological processes like tissue repair, inflammation, and metabolism. Notably, preclinical studies have demonstrated that exercise-derived EVs can inhibit tumor growth, reduce metastasis, and enhance treatment response. For instance, in a study using animal models, exercise-derived EVs were shown to suppress tumor proliferation in breast and colon cancers. Another study reported that these EVs reduced metastatic potential by decreasing the migration and invasion of cancer cells. Additionally, exercise-induced EVs have been found to enhance the effectiveness of chemotherapy by sensitizing tumor cells to treatment. This review highlights the emerging role of exercise-derived circulating biomolecules, particularly EVs, in cancer biology. It discusses the mechanisms through which EVs impact cancer progression, the challenges in translating preclinical findings to clinical practice, and future research directions. Although research in this area is still limited, current findings suggest that EVs could play a crucial role in spreading molecules that promote better health in cancer patients. Understanding these EV profiles could lead to future therapies, such as exercise mimetics or targeted drugs, to treat cancer.

16.
Cancers (Basel) ; 16(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39272925

RESUMO

Breast cancer (BC) continues to significantly impact women worldwide. Numerous studies show that physical activity (PA) significantly enhances the quality of life, aids recovery, and improves survival rates in BC patients. PA's influence extends to altering DNA methylation patterns on both a global and gene-specific scale, potentially reverting abnormal DNA methylation, associated with carcinogenesis and various pathologies. This review consolidates the findings of the current literature, highlighting PA's impact on DNA methylation in BC patients. Our systematic analysis indicates that PA may elevate global DNA methylation within tumour tissues. Furthermore, it appears to modify gene-specific promoter methylation across a wide spectrum of genes in various tissues. Through bioinformatic analysis, to investigate the functional enrichment of these affected genes, we identified a predominant enrichment in metabolic pathways, cell cycle regulation, cell cycle checkpoints, mitosis, cellular stress responses, and molecular functions governing diverse binding processes. The Human Protein Atlas corroborates this enrichment, indicating gene functionality across 266 tissues, notably within various breast tissues. This systematic review unveils PA's capacity to systematically alter DNA methylation patterns across multiple tissues, particularly in BC patients. Emphasising its influence on crucial biological processes and functions, this alteration holds potential for restoring normal cellular functionality and the cell cycle. This reversal of cancer-associated patterns could potentially enhance recovery and improve survival outcomes.

17.
Biology (Basel) ; 13(10)2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39452105

RESUMO

Muscle tissue is an important target of sex steroids, and particularly, testosterone plays essential roles in muscle cell metabolism. Wide ranges of studies have reported sex differences in basal muscle steroidogenesis, and recently several genes have been identified to be regulated by androgen response elements that show innate sex differences in muscle. However, studies accounting for and demonstrating cell sexual dimorphism in vitro are still scarce and not well characterized. Here, we demonstrated the ability of 46XX and 46XY human primary skeletal muscle cells to differently activate steroidogenesis in vitro, likely related to sex-chromosome onset, and to differently induce hormone release after increasing doses of testosterone exposure. Cells were treated with testosterone at concentrations of 0.5, 2, 5, 10, 32, and 100 nmol/L for 24 h. Variations in 17ß-HSD, 5α-R2, CYP-19 expression, DHT, estradiol, and androstenedione release, as well as IL6 and IL8 release, were analyzed, respectively, by RT-PCR, ELISA, and luminex-assay. Following testosterone treatments, and potentially at any concentration level, an increase in the expression of 17ß-HSD, 5α-R2, and CYP-19 was observed in 46XY cells, accompanied by elevated levels of DHT, androstenedione, and IL6/IL8 release. Following the same treatment, 46XX cells exhibited an increase in 5α-R2 and CYP-19 expression, a conversion of androgens to estrogens, and a reduction in IL6 and IL8 release. In conclusion, this study demonstrated that sex-chromosome differences may influence in vitro muscle cell steroidogenesis and hormone homeostasis, which are pivotal for skeletal muscle metabolism.

18.
Redox Biol ; 70: 103033, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38211440

RESUMO

Most anticancer treatments act on oxidative-stress pathways by producing reactive oxygen species (ROS) to kill cancer cells, commonly resulting in consequential drug-induced systemic cytotoxicity. Physical activity (PA) has arisen as an integrative cancer therapy, having positive health effects, including in redox-homeostasis. Here, we investigated the impact of an online supervised PA program on promoter-specific DNA methylation, and corresponding gene expression/activity, in 3 antioxidants- (SOD1, SOD2, and CAT) and 3 breast cancer (BC)-related genes (BRCA1, L3MBTL1 and RASSF1A) in a population-based sample of women diagnosed with primary BC, undergoing medical treatment. We further examined mechanisms involved in methylating and demethylating pathways, predicted biological pathways and interactions of exercise-modulated molecules, and the functional relevance of modulated antioxidant markers on parameters related to aerobic capacity/endurance, physical fatigue and quality of life (QoL). PA maintained levels of SOD activity in blood plasma, and at the cellular level significantly increased SOD2 mRNA (≈+77 %), contrary to their depletion due to medical treatment. This change was inversely correlated with DNA methylation in SOD2 promoter (≈-20 %). Similarly, we found a significant effect of PA only on L3MBTL1 promoter methylation (≈-25 %), which was inversely correlated with its mRNA (≈+43 %). Finally, PA increased TET1 mRNA levels (≈+15 %) and decreased expression of DNMT3B mRNA (≈-28 %). Our results suggest that PA-modulated DNA methylation affects several signalling pathways/biological activities involved in the cellular oxidative stress response, chromatin organization/regulation, antioxidant activity and DNA/protein binding. These changes may positively impact clinical outcomes and improve the response to cancer treatment in post-surgery BC patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Qualidade de Vida , Estudos Longitudinais , Metilação de DNA , Exercício Físico , Oxirredução , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Progressão da Doença , RNA Mensageiro/metabolismo , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
19.
Minerva Endocrinol (Torino) ; 48(2): 222-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35119252

RESUMO

Beside its mechanical roles in controlling posture and locomotion, skeletal muscle system, the largest insulin and steroid hormones target tissue, plays a key role in influencing thermoregulation, secondary sexual characteristics, hormones metabolism, and glucose uptake and storage, as well as energetic metabolism. Indeed, in addition to insulin, several hormones influence the skeletal muscle metabolism/function and/or are influenced by skeletal muscles activity (i.e., physical exercise). Particularly, steroid hormones play a key role in modulating many biological processes in muscles, essential for overall muscle's function and homeostasis, both at rest and during all physical activities (i.e., physical exercise, muscular work). Phosphodiesterase type 5 (PDE5) is the enzyme engaged to hydrolyze cyclic guanosine monophosphate (cGMP) in inactive 5'-GMP form. Therefore, through the inhibition of this enzyme, the intracellular level of cGMP increases, and the cGMP-related cellular responses are prolonged. Different drugs inhibiting PDE5 (PDE5i) exist, and the commercially available PDE5i are sildenafil, vardenafil, tadalafil, and avanafil. The PDE5i tadalafil may influence cellular physiology and endocrine-metabolic pathways in skeletal muscles and exerts its functions both by activating the cell signaling linked to the insulin-related metabolic pathways and modulating the endocrine responses, protein catabolism and hormone-related anabolism/catabolism during and after physical exercise-related stress. Based on recent in-vivo and in-vitro findings, in this narrative review the aim was to summarize the available evidence describing the interactions between the PDE5i tadalafil and steroid hormones in skeletal muscle tissue and physical exercise adaptation, focusing our interest on their possible synergistic or competitive action(s) on muscle metabolism and function.


Assuntos
Insulinas , Inibidores da Fosfodiesterase 5 , Tadalafila/farmacologia , Tadalafila/metabolismo , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 5/metabolismo , Carbolinas/metabolismo , Carbolinas/farmacologia , Músculo Esquelético/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/farmacologia , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Hormônios/metabolismo , Hormônios/farmacologia , Insulinas/metabolismo , Insulinas/farmacologia
20.
Free Radic Biol Med ; 204: 266-275, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182793

RESUMO

Considering the role of redox homeostasis in exercise-induced signaling and adaptation, this study focuses on the exercise training-related intercellular communication of redox status mediated by circulating extracellular vesicles (EVs). 19 healthy young males were divided into trained (TG, 7) and untrained (UG, 12) subjects based on their VO2MAX. The UG subjects were further randomly distributed in experimental (UGEX, N = 7) and control (UGCTRL, N = 5) groups. The steady state of plasma EVs in TG and UGEX have been characterized for total number and size, as well as cargo redox status (antioxidants, transcription factors, HSPs) before, 3 and 24 h after a single bout of aerobic exercise (30', 70% HRM). Plasma EVs from UGEX and UGCTRL have been further characterized after 24 h from the last session of a 5-day consecutive aerobic training or no training, respectively. No differences were detected in the EVs' size and distribution at baseline in TG and UGEX (p>0.05), while the EVs cargo of UGEX showed a significantly higher concentration of protein carbonyl, Catalase, SOD2, and HSF1 compared to TG (p<0.05). 5 days of consecutive aerobic training in UGEX did not determine major changes in the steady-state number and size of EVs. The post-training levels of protein carbonyl, HSF1, Catalase, and SOD2 in EVs cargo of UGEX resulted significantly lower compared with UGEX before training and UGCTRL, resembling the steady-state levels in circulating EVs of TG subjects. Altogether, these preliminary data indicate that individual aerobic capacity influences the redox status of circulating EVs, and that short-term aerobic training impacts the steady-state redox status of EVs. Taking this pilot study as a paradigm for physio-pathological stimuli impacting redox homeostasis, our results offer new insights into the utilization of circulating EVs as biomarkers of exercise efficacy and of early impairment of oxidative-stress related diseases.


Assuntos
Exercício Físico , Vesículas Extracelulares , Masculino , Humanos , Catalase/metabolismo , Projetos Piloto , Oxirredução , Vesículas Extracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa