Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(2): e1005439, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26910529

RESUMO

Developmental differentiation is a universal biological process that allows cells to adapt to different environments to perform specific functions. African trypanosomes progress through a tightly regulated life cycle in order to survive in different host environments when they shuttle between an insect vector and a vertebrate host. Transcriptomics has been useful to gain insight into RNA changes during stage transitions; however, RNA levels are only a moderate proxy for protein abundance in trypanosomes. We quantified 4270 protein groups during stage differentiation from the mammalian-infective to the insect form and provide classification for their expression profiles during development. Our label-free quantitative proteomics study revealed previously unknown components of the differentiation machinery that are involved in essential biological processes such as signaling, posttranslational protein modifications, trafficking and nuclear transport. Furthermore, guided by our proteomic survey, we identified the cause of the previously observed differentiation impairment in the histone methyltransferase DOT1B knock-out strain as it is required for accurate karyokinesis in the first cell division during differentiation. This epigenetic regulator is likely involved in essential chromatin restructuring during developmental differentiation, which might also be important for differentiation in higher eukaryotic cells. Our proteome dataset will serve as a resource for detailed investigations of cell differentiation to shed more light on the molecular mechanisms of this process in trypanosomes and other eukaryotes.


Assuntos
Proteoma/genética , Proteômica , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Cromatina/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Estágios do Ciclo de Vida/genética , Proteômica/métodos , Trypanosoma brucei brucei/genética
2.
Nucleic Acids Res ; 42(5): 2906-18, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24322299

RESUMO

The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes.


Assuntos
Chaperonas de Histonas/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Acetilação , Ciclo Celular , Dano ao DNA , Chaperonas de Histonas/análise , Chaperonas de Histonas/fisiologia , Histonas/metabolismo , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Proteínas de Protozoários/análise , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/química
3.
Proc Natl Acad Sci U S A ; 107(46): 19754-9, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20974910

RESUMO

Protein synthesis in all living organisms occurs on ribonucleoprotein particles, called ribosomes. Despite the universality of this process, eukaryotic ribosomes are significantly larger in size than their bacterial counterparts due in part to the presence of 80 r proteins rather than 54 in bacteria. Using cryoelectron microscopy reconstructions of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Å resolution, together with a 6.1-Å map of a translating Saccharomyces cerevisiae 80S ribosome, we have localized and modeled 74/80 (92.5%) of the ribosomal proteins, encompassing 12 archaeal/eukaryote-specific small subunit proteins as well as the complete complement of the ribosomal proteins of the eukaryotic large subunit. Near-complete atomic models of the 80S ribosome provide insights into the structure, function, and evolution of the eukaryotic translational apparatus.


Assuntos
Microscopia Crioeletrônica , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Evolução Molecular , Modelos Moleculares , Transporte Proteico , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Especificidade da Espécie , Triticum/metabolismo
4.
Proc Natl Acad Sci U S A ; 107(46): 19748-53, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20980660

RESUMO

Protein biosynthesis, the translation of the genetic code into polypeptides, occurs on ribonucleoprotein particles called ribosomes. Although X-ray structures of bacterial ribosomes are available, high-resolution structures of eukaryotic 80S ribosomes are lacking. Using cryoelectron microscopy and single-particle reconstruction, we have determined the structure of a translating plant (Triticum aestivum) 80S ribosome at 5.5-Šresolution. This map, together with a 6.1-Šmap of a Saccharomyces cerevisiae 80S ribosome, has enabled us to model ∼98% of the rRNA. Accurate assignment of the rRNA expansion segments (ES) and variable regions has revealed unique ES-ES and r-protein-ES interactions, providing insight into the structure and evolution of the eukaryotic ribosome.


Assuntos
Microscopia Crioeletrônica , Células Eucarióticas/ultraestrutura , Modelos Moleculares , Biossíntese de Proteínas , RNA Ribossômico/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura , Cristalografia por Raios X , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Células Eucarióticas/metabolismo , Humanos , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Triticum/metabolismo , Triticum/ultraestrutura
5.
Nat Commun ; 5: 5313, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25387577

RESUMO

DOT1 enzymes are conserved methyltransferases that catalyse the methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, with different enzymatic activities. DOT1A mediates mono- and dimethylation of H3K76, the homologue of H3K79 in other organisms, whereas DOT1B additionally catalyses H3K76 trimethylation. However, it is unclear how these different enzymatic activities are achieved. Here we employ a trypanosomal nucleosome reconstitution system and structure-guided homology modelling to identify critical residues within and outside the catalytic centre that modulate product specificity. Exchange of these residues transfers the product specificity from one enzyme to the other, and reveals the existence of distinct regulatory domains adjacent to the catalytic centre. Our study provides the first evidence that a few crucial residues in DOT1 enzymes are sufficient to catalyse methyl-state-specific reactions. These results might also have far-reaching consequences for the functional understanding of homologous enzymes in higher eukaryotes.


Assuntos
Análise Mutacional de DNA , Histona-Lisina N-Metiltransferase/fisiologia , Sequência de Aminoácidos , Análise Mutacional de DNA/métodos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Metilação , Dados de Sequência Molecular , Nucleossomos/metabolismo , Homologia de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Especificidade por Substrato/fisiologia , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa