Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 7(40): 22669-77, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26390298

RESUMO

The practical applications of transition metal oxides and hydroxides for supercapacitors are restricted by their intrinsic poor conductivity, large volumetric expansion, and rapid capacitance fading upon cycling, which can be solved by optimizing these materials to nanostructures and confining them within conductive carbonaceous frameworks. In this work, flexible hybrid membranes with ultrathin Ni(OH)2 nanoplatelets vertically and uniformly anchored on the electrospun carbon nanofibers (CNF) have been facilely prepared as electrode materials for supercapacitors. The Ni(OH)2/CNF hybrid membranes with three-dimensional macroporous architectures as well as hierarchical nanostructures can provide open and continuous channels for rapid diffusion of electrolyte to access the electrochemically active Ni(OH)2 nanoplatelets. Moreover, the carbon nanofiber can act both as a conductive core to provide efficient transport of electrons for fast Faradaic redox reactions of the Ni(OH)2 sheath, and as a buffering matrix to mitigate the local volumetric expansion/contraction upon long-term cycling. As a consequence, the optimized Ni(OH)2/CNF hybrid membrane exhibits a high specific capacitance of 2523 F g(-1) (based on the mass of Ni(OH)2, that is 701 F g(-1) based on the total mass) at a scan rate of 5 mV s(-1). The Ni(OH)2/CNF hybrid membranes with high mechanical flexibility, superior electrical conductivity, and remarkably improved electrochemical capacitance are condsidered as promising flexible electrode materials for high-performance supercapacitors.

2.
Nanoscale ; 7(3): 1037-46, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25474256

RESUMO

Anisotropic electrically conductive films (PI-GNR/CNT) consisting of highly aligned polyimide (PI) composite fibers with graphene nanoribbon (GNR) and carbon nanotube (CNT) (GNR/CNT) hybrids as nanofillers have been prepared by electrospinning. The GNR/CNT hybrids used here were prepared by one-step partial unzipping of multi-walled CNTs, in which, with the residual CNTs bonded on the randomly arranged GNR sheets, not only the aggregation of GNR sheets was greatly prevented but also an electrically conductive pathway with good conductivity was effectively formed with the CNTs acting as linking bridges between different GNRs. Due to the three-dimensional (3D) conductive network structure of the GNR/CNT hybrid and fine dispersion and alignment inside the PI fibers, as well as the good interfacial interaction between the GNR/CNT hybrid and the PI matrix, PI-GNR/CNT composite films exhibit a unique property of anisotropic electrical conductivity of 8.3 × 10(-2) S cm(-1) in the parallel direction along the fibers and 7.2 × 10(-8) S cm(-1) in the perpendicular direction, which may open the way for wide potential applications of anisotropic conductive nanomaterials in practical production and scientific research fields.

3.
J Colloid Interface Sci ; 424: 49-55, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24767497

RESUMO

A simple and practical strategy has been developed for preparing polyaniline (PANi) coated TiO2/SiO2 nanofiber membranes by a combination of electrospinning, calcination and in situ polymerization. TiO2/SiO2 (TS) nanofibers are fabricated by electrospinning, followed by calcination. Then they are used as template for in situ polymerization of aniline monomers. SEM images show that PANi nanoparticles thus formed can be densely and uniformly coated on the surface of TS nanofibers. Photocatalytic degradation tests show that the as-prepared nanofiber membranes exhibit enhanced photocatalytic activity for degradation of methyl orange under visible light, which may be due to the synergistic effect of PANi and TiO2. Furthermore, the effect of polymerization time on the morphology and photocatalytic activity of the membrane is investigated. The free-standing membrane is flexible and easy to handle, which is promising for potential applications in photocatalysis and water remediation fields.

4.
ACS Appl Mater Interfaces ; 5(12): 5617-22, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23721281

RESUMO

A simple and efficient method has been developed for preparing hierarchical nanostructures of polyimide (PI)/ZnO fibers by combining electrospinning and direct ion-exchange process. Poly(amic acid) (PAA) nanofibers are first prepared by electrospinning, and then, the electrospun PAA fibers are immersed into ZnCl2 solution. After a subsequent thermal treatment, imidization of PAA and formation of ZnO nanoparticles can be simultaneously achieved in one step to obtain PI/ZnO composite fibers. SEM images show that ZnO nanoparticles are densely and uniformly immobilized on the surface of electrospun PI fibers. Furthermore, the morphology of ZnO can be tuned from nanoplatelets to nanorods by changing the initial concentration of ZnCl2 solution. Photocatalytic degradation tests show an efficient degradation ability of PI/ZnO composite membranes toward organic dyes. Meanwhile, the free-standing membrane is highly flexible, easy to handle, and easy to retrieve, which enables its use in water treatment. This simple and inexpensive approach can also be applied to fabricating other hierarchically nanostructured composites.


Assuntos
Imidas/química , Nanofibras/química , Óxido de Zinco/química , Cloretos , Troca Iônica , Microscopia Eletrônica de Varredura , Nanofibras/efeitos da radiação , Nanopartículas , Processos Fotoquímicos , Polímeros/química , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa