Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Chem Soc ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728652

RESUMO

Porous organic polymers (POPs) with inherent porosity, tunable pore environment, and semiconductive property are ideally suitable for application in various advanced semiconductor-related devices. However, owing to the lack of processability, POPs are usually prepared in powder forms, which limits their application in advanced devices. Herein, we demonstrate an example of information storage application of POPs with film form prepared by an electrochemical method. The growth process of the electropolymerized films in accordance with the Volmer-Weber model was proposed by observation of atomic force microscopy. Given the mechanism of the electron transfer system, we verified and mainly emphasized the importance of porosity and interfacial properties of porous polymer films for memristor. As expected, the as-fabricated memristors exhibit good performance on low turn-on voltage (0.65 ± 0.10 V), reliable data storage, and high on/off current ratio (104). This work offers inspiration for applying POPs in the form of electropolymerized films in various advanced semiconductor-related devices.

2.
Small ; : e2404192, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004849

RESUMO

The tunable pore walls and skeletons render covalent organic frameworks (COFs) as promising absorbents for gold (Au) ion. However, most of these COFs suffered from low surface areas hindering binding sites exposed and weak binding interaction resulting in sluggish kinetic performance. In this study, COFs have been constructed with synergistic linker and linkage for high-efficiency Au capture. The designed COFs (PYTA-PZDH-COF and PYTA-BPDH-COF) with pyrazine or bipyridine as linkers showed high surface areas of 1692 and 2076 m2 g‒1, providing high exposed surface areas for Au capture. In addition, the Lewis basic nitrogen atoms from the linkers and linkages are easily hydronium, which enabled to fast trap Au via coulomb force. The PYTA-PZDH-COF and PYTA-BPDH-COF showed maximum Au capture capacities of 2314 and 1810 mg g-1, higher than other reported COFs. More importantly, PYTA-PZDH-COF are capable of rapid adsorption kinetics with achieving 95% of maximum binding capacity in 10 min. The theoretical calculation revealed that the nitrogen atoms in linkers and linkages from both COFs are simultaneously hydronium, and then the protonated PYTA-PZDH-COF are more easily binding the AuCl4 ‒, further accelerating the binding process. This study gives the a new insight to design COFs for ion capture.

3.
Angew Chem Int Ed Engl ; 63(1): e202317015, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37983587

RESUMO

Covalent organic frameworks (COFs) have attracted considerable attention as adsorbents for capturing and separating gold from electronic wastes. To enhance the binding capture efficiency, constructing hydrogen-bond nanotraps along the pore walls was one of the most widely adopted approaches. However, the development of absorbing skeletons was ignored due to the weak binding ability of the gold salts (Au). Herein, we demonstrated skeleton engineering to construct highly efficiently absorbs for Au capture. The strong electronic donating feature of diarylamine units enhanced the electronic density of binding sites (imine-linkage) and thus resulted in high capacities over 1750 mg g-1 for all three COFs. Moreover, the absorbing performance was further improved via the ionization of diarylamine units. The ionic COF achieved 90 % of the maximal adsorption capacity, 1.63 times of that from the charge-neutral COF within ten minutes, and showed remarkable uptakes of 1834 mg g-1 , exceptional selectivity (97.45 %) and cycling stability. The theoretical calculation revealed the binding sites altering from imine bonds to ionic amine sites after ionization of the frameworks, which enabled to bind the AuCl4 - via coulomb force and contributed to enhanced absorbing kinetics. This work inspires us to design molecular/ionic capture based on COFs.

4.
Gynecol Endocrinol ; 39(1): 2219342, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37290480

RESUMO

OBJECTIVE: To investigate the effect of exenatide treatment on the composition of intestinal flora and metabolic pathways in patients with obesity with polycystic ovary syndrome. METHODS: Patients with obesity with polycystic ovary syndrome (PCOS) were distributed to two groups: one received exenatide combined with metformin (COM group, n = 14) and the other used metformin alone (MF group, n = 15). Fresh fecal specimens from the participants, including 29 patients with obesity with PCOS and 6 healthy controls, were collected for metagenomic sequencing. The effect of exenatide combination with metformin or metformin alone on the composition and function of intestinal flora in patients with obesity with PCOS were compared by bioinformatics analysis. RESULTS: The level of BMI, TT, HbA1c, and HDL-c was significantly improved in both groups. The MF and COM groups were abundant in Firmicutes, Bacteroidetes, Uroviricota, Actinobacteria, and Proteobacteria. Abundance of Bacteroidetes, Proteobacteria, Hungatella, and certain probiotics like Phocaeicola and Anaerobutyricum significantly increased in both groups after treatment. Enriched microbial species in the MF and COM group were different. Clostridium, Fusobacterium, and Oxalobacter were the main bacteria in the post-MF group, while Lactococcus_garvieae, Clostridium_perfringens, and Coprococcus_sp_AF16_5 were the main bacteria in the post-COM group. The post-COM group had more probiotic species including Bifidobacterium, Prevotella, and Anaerobutyricum after treatment. CONCLUSION: Both exenatide combined with metformin and metformin monotherapy can improve metabolic and endocrine markers, and the diversity and abundance of gut microbiota in patients with obesity with PCOS. The effects of the combination and monotherapy agents on intestinal flora were consistent to some extent but also unique respectively.


Assuntos
Microbioma Gastrointestinal , Metformina , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Exenatida/uso terapêutico , Metagenômica , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/induzido quimicamente
5.
Chem Soc Rev ; 51(2): 761-791, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34989729

RESUMO

Porous organic polymers (POPs) composed of organic building units linked via covalent bonds are a class of lightweight porous network materials with high surface areas, tuneable pores, and designable components and structures. Owing to their well-preserved characteristics in terms of structure and composition, POPs applied as electrocatalysts have shown promising activity and achieved considerable advances in numerous electrocatalytic reactions, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, N2 reduction reaction, nitrate/nitrite reduction reaction, nitrobenzene reduction reaction, hydrogen oxidation reaction, and benzyl alcohol oxidation reaction. Herein, we present a systematic overview of recent advances in the applications of POPs in these electrocatalytic reactions. The synthesis strategies, specific active sites, and catalytic mechanisms of POPs are summarized in this review. The fundamental principles of some electrocatalytic reactions are also concluded. We further discuss the current challenges of and perspectives on POPs for electrocatalytic applications. Meanwhile, the possible future directions are highlighted to afford guidelines for the development of efficient POP electrocatalysts.

6.
Angew Chem Int Ed Engl ; 62(42): e202310794, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37596246

RESUMO

Covalent organic frameworks (COFs) with structural designability and tunability of photophysical properties enable them to be a promising class of organic luminescent materials by incorporating well-designed fluorescent units directly into the periodic skeletons. The photophysical properties of COFs are mainly affected by the structural features, which determine the conjugation degree, charge delocalization ability, and exciton dynamics of COFs. To understand the relationship between COF structures and their photophysical properties, two COFs with the same pyrene chromophore units but different linkages (imine or vinylene) were designed and synthesized. Interestingly, different linkages endow COFs with huge differences in solid-state photoluminescence quantum yield (PLQY) for imine- and vinylene-linked pyrene-based COFs, which possess PLQY values of 0.34 % and 15.43 %, respectively. The femtosecond-transient absorption spectra and time-dependent density functional theory reveal the different charge-transfer pathways in imine- and vinylene-linked COFs, which influence the exciton relaxation way and fluorescence intensity. In addition, an effective white-light device was obtained by coating the vinylene-linked COF on a light-emitting diode strip.

7.
Angew Chem Int Ed Engl ; 62(36): e202308523, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37370248

RESUMO

Constructing a powerful photocatalytic system that can achieve the carbon dioxide (CO2 ) reduction half-reaction and the water (H2 O) oxidation half-reaction simultaneously is a very challenging but meaningful task. Herein, a porous material with a crystalline topological network, named viCOF-bpy-Re, was rationally synthesized by incorporating rhenium complexes as reductive sites and triazine ring structures as oxidative sites via robust -C=C- bond linkages. The charge-separation ability of viCOF-bpy-Re is promoted by low polarized π-bridges between rhenium complexes and triazine ring units, and the efficient charge-separation enables the photogenerated electron-hole pairs, followed by an intramolecular charge-transfer process, to form photogenerated electrons involved in CO2 reduction and photogenerated holes that participate in H2 O oxidation simultaneously. The viCOF-bpy-Re shows the highest catalytic photocatalytic carbon monoxide (CO) production rate (190.6 µmol g-1 h-1 with about 100 % selectivity) and oxygen (O2 ) evolution (90.2 µmol g-1 h-1 ) among all the porous catalysts in CO2 reduction with H2 O as sacrificial agents. Therefore, a powerful photocatalytic system was successfully achieved, and this catalytic system exhibited excellent stability in the catalysis process for 50 hours. The structure-function relationship was confirmed by femtosecond transient absorption spectroscopy and density functional theory calculations.

8.
Lasers Med Sci ; 37(4): 2239-2248, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35028764

RESUMO

We aimed to compare low-level light therapy with oral contraceptive pills for pain relief and serum levels of nitric oxide and prostaglandin E2 in patients with primary dysmenorrhoea. This was a randomised, active comparator-controlled, multicentre study. In total, 156 patients were randomised to receive either low-level light therapy with light-emitting diodes (LED) applying on two acupoints, namely, conception vessel 4 (CV4) and CV6 or conventional treatment with oral Marvelon, 30 µg of ethinyl estradiol and 150 µg of desogestrel (DSG/EE), for three consecutive menstrual cycles. The main outcome was the proportion of patients who achieved 33% or more decrease in pain scores measured using the visual analogue scale, which was deemed as efficient rate. Absolute changes in visual analogue scale scores, serum levels of nitric oxide (assessed by nitrites and nitrates reflecting nitric oxide metabolism) and prostaglandin E2 (measured by enzyme-linked immunosorbent assay) were the secondary outcomes. A total of 135 patients completed the study (73 in the light therapy group and 62 in the DSG/EE group). The efficient rate at the end of treatment was comparable between the groups (73.6% vs. 85.7%, χ2 = 2.994, p = 0.084). A more significant reduction in pain scores was observed in the DSG/EE group (39.25% vs. 59.52%, p < 0.001). Serum levels of prostaglandin E2 significantly decreased from baseline but did not differ between groups (- 109.57 ± 3.99 pg/mL vs. - 118.11 ± 12.93 pg/mL, p = 0.51). Nitric oxide concentration remained stable in both groups. Low-level light therapy with LED-based device applied on acupuncture points CV4 and CV6 demonstrated a similar level of dysmenorrhoea pain reduction to DSG/EE combined contraceptive. Both treatment modalities achieved clinically meaningful levels of pain reduction. Registration on ClinicalTrials.gov: TRN: NCT03953716, Date: April 04, 2019.


Assuntos
Anticoncepcionais Orais Combinados , Terapia com Luz de Baixa Intensidade , Anticoncepcionais Orais Combinados/efeitos adversos , Desogestrel/efeitos adversos , Desogestrel/uso terapêutico , Dismenorreia/tratamento farmacológico , Dismenorreia/radioterapia , Etinilestradiol/efeitos adversos , Etinilestradiol/uso terapêutico , Feminino , Humanos , Óxido Nítrico , Norpregnenos/efeitos adversos , Estudos Prospectivos , Prostaglandinas , Resultado do Tratamento
9.
Angew Chem Int Ed Engl ; 61(38): e202205796, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35639438

RESUMO

Porous organic polymer films (PFs) with intrinsical porosity and tuneable pore environment are ideally suited for application in electronic devices. However, the huge challenges still exist for construction of electronic devices based on PFs owing to lack of robustness, processability, and controllable preparation. Herein, we report the electrochemical preparation of carbazole-based porous organic polymer films (eCPFs) as switchable materials for the memristors. These eCPFs possess the characteristics of controllable thickness/size, high stability, and excellent porosity. Carbazole and cyano groups are introduced into the eCPFs to constructing electron transfer systems. Thus, the memristors constructed based on these eCPFs exhibit excellent switching performance, reliability, and reproducibility. The electrochemically controllable preparation method of porous organic polymer membranes proposed in this paper provides a feasible idea for the developments of electronic devices.

10.
J Cardiovasc Pharmacol ; 75(1): 45-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31895879

RESUMO

Atherosclerosis is a chronic inflammation condition resulting from the interaction between lipoproteins, monocyte-derived macrophages, T lymphocytes, and other cellular elements in the arterial wall. Macrophage-derived foam cells play a key role in both early and advanced stage of atherosclerosis. Previous studies have shown that berberine could inhibit foam cell formation and prevent experimental atherosclerosis. However, its underlying molecular mechanisms have not been fully clarified. In this study, we explored the cholesterol-lowering effects of berberine in macrophage-derived foam cells and investigated its possible mechanisms in prevention and treatment of atherosclerosis. Here, we demonstrated that berberine could inhibit atherosclerosis in apolipoprotein E-deficient mice and induce cholesterol reduction as well as decrease the content of macrophages. Berberine can regulate oxLDL uptake and cholesterol efflux, thus suppresses foam cell formation. Mechanisms study showed that berberine can suppress scavenger receptor expression via inhibiting the activity of AP-1 and upregulate ATP-binding cassette transporter via activating Nrf2/HO-1 signaling in human macrophage. In summary, berberine significantly inhibits atherosclerotic disease development by regulating lipid homeostasis and suppressing macrophage foam cell formation.


Assuntos
Aterosclerose/prevenção & controle , Berberina/farmacologia , Colesterol/metabolismo , Antagonistas Colinérgicos/farmacologia , Células Espumosas/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Transcrição AP-1/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Antígenos CD36/metabolismo , Modelos Animais de Doenças , Células Espumosas/enzimologia , Células Espumosas/patologia , Heme Oxigenase-1/genética , Humanos , Lipoproteínas LDL/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fator 2 Relacionado a NF-E2/genética , Receptores Depuradores Classe A/metabolismo , Células THP-1
11.
BMC Genomics ; 20(1): 804, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684883

RESUMO

BACKGROUND: Stability is one of the most fundamental intrinsic characteristics of proteins and can be determined with various methods. Characterization of protein properties does not keep pace with increase in new sequence data and therefore even basic properties are not known for far majority of identified proteins. There have been some attempts to develop predictors for protein stabilities; however, they have suffered from small numbers of known examples. RESULTS: We took benefit of results from a recently developed cellular stability method, which is based on limited proteolysis and mass spectrometry, and developed a machine learning method using gradient boosting of regression trees. ProTstab method has high performance and is well suited for large scale prediction of protein stabilities. CONCLUSIONS: The Pearson's correlation coefficient was 0.793 in 10-fold cross validation and 0.763 in independent blind test. The corresponding values for mean absolute error are 0.024 and 0.036, respectively. Comparison with a previously published method indicated ProTstab to have superior performance. We used the method to predict stabilities of all the remaining proteins in the entire human proteome and then correlated the predicted stabilities to protein chain lengths of isoforms and to localizations of proteins.


Assuntos
Células/metabolismo , Biologia Computacional/métodos , Proteoma/química , Proteoma/metabolismo , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidade Proteica
12.
Langmuir ; 34(26): 7640-7646, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29877710

RESUMO

Proton-exchange membrane fuel cells, emerging as green and sustainable energy sources, have attracted extensive attention in recent decades. Porous organic polymers, which feature in high surface area values, tunable pore sizes, excellent thermal and chemical stabilities, and the flexibility to incorporate specific functional groups, have recently displayed their striking images as potential electrolytes for fuel cells. In this work, BO-CMP-1 and BO-CMP-2 that possess rich π-structure and permanent porosity and have high thermal and chemical stability were synthesized through Suzuki-Miyaura coupling reaction. Owing to their rigid structures and abundant electrophilic substitution positions, these two novel porous polymers were covalently decorated with dense sulfonic acid groups by postsulfonation, as denoted by SBO-CMP-1 and SBO-CMP-2. The proton conductivity of SBO-CMPs is systematically studied to evaluate their performance as proton-conductive materials. It was found that their performance is highly humidity- and temperature-dependent and they show relatively high proton conductivity. For SBO-CMP-1 and SBO-CMP-2, their proton conductivities are 1.29 × 10-2 and 5.21 × 10-3 S cm-1, respectively, at 70 °C and 100% relative humidity. Low activation energy values of 0.32 eV for SBO-CMP-1 and 0.40 eV for SBO-CMP-2 suggest the Grotthuss mechanism for proton conduction.

13.
Int J Mol Sci ; 19(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597263

RESUMO

Several methods have been developed to predict effects of amino acid substitutions on protein stability. Benchmark datasets are essential for method training and testing and have numerous requirements including that the data is representative for the investigated phenomenon. Available machine learning algorithms for variant stability have all been trained with ProTherm data. We noticed a number of issues with the contents, quality and relevance of the database. There were errors, but also features that had not been clearly communicated. Consequently, all machine learning variant stability predictors have been trained on biased and incorrect data. We obtained a corrected dataset and trained a random forests-based tool, PON-tstab, applicable to variants in any organism. Our results highlight the importance of the benchmark quality, suitability and appropriateness. Predictions are provided for three categories: stability decreasing, increasing and those not affecting stability.


Assuntos
Bases de Dados de Proteínas , Aprendizado de Máquina , Modelos Moleculares , Proteínas/química , Estabilidade Proteica , Proteínas/genética
14.
Chemistry ; 22(33): 11863-8, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27412919

RESUMO

We report a highly efficient iodine adsorbent achieved by rational design of a porous azo-bridged porphyrin-phthalocyanine network (AzoPPN), which was synthesized by a catalyst-free coupling reaction between free-base 5,10,15,20-tetrakis(4-nitrophenyl)-porphyrin and nickel tetraaminophthlocyanine. AzoPPN has a permanent porous structure and plenty of porphyrin and phthalocyanine units in the skeleton as effective sorption sites. It displays excellent adsorption of iodine vapor up to 290 wt. % and also shows remarkable capability as adsorbent for iodine in solution. This strategy of combining physisorption with chemisorption in one adsorbent will pave the way for the development of new materials for iodine capture.

15.
Chemistry ; 21(48): 17355-62, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26463890

RESUMO

A luminescent conjugated microporous polymer (BCMP-3) has been synthesized in high yield by a carbon-carbon coupling reaction using triarylboron as a building unit. BCMP-3 was fully characterized by using powder X-ray diffraction analysis, Fourier transform infrared spectroscopy, (13) C solid-state NMR spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, and nitrogen and carbon dioxide adsorption. The new three-dimensional conjugated framework possess a high Brunauer-Emmett-Teller (BET) specific surface area up to 950 m(2) g(-1) with a pore volume of 0.768 cm(3) g(-1) , good stability, and abundant boron sites in the skeleton. Under excited-light irradiation, BCMP-3 exhibits strong fluorescent emission at 488 nm with a high absolute quantum yield of 18 % in the solid state. Polymer BCMP-3 acts as a colorimetric and fluorescent chemosensor with high sensitivity and selectivity for F(-) over other common anions. In addition, the polymer also works as an adsorbent for F(-) removal and shows good adsorption capacities of up to 24 mg g(-1) at equilibrium F(-) concentrations of 16 mg L(-1) and a temperature of 298 K. The adsorption kinetics and isotherm were analyzed by fitting experimental data with pseudo-second-order kinetics and Langmuir equations. Furthermore, we highlight that BCMP-3 is an adsorbent for fluoride removal that can be efficiently reused many times without loss of adsorption efficiency.

16.
Chemistry ; 21(34): 12079-84, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26177594

RESUMO

A azine-linked covalent organic framework, COF-JLU2, was designed and synthesized by condensation of hydrazine hydrate and 1,3,5-triformylphloroglucinol under solvothermal conditions for the first time. The new covalent organic framework material combines permanent micropores, high crystallinity, good thermal and chemical stability, and abundant heteroatom activated sites in the skeleton. COF-JLU2 possesses a moderate BET surface area of over 410 m(2) g(-1) with a pore volume of 0.56 cm(3) g(-1) . Specifically, COF-JLU2 displays remarkable carbon dioxide uptake (up to 217 mg g(-1) ) and methane uptake (38 mg g(-1) ) at 273 K and 1 bar, as well as high CO2 /N2 (77) selectivity. Furthermore, we further highlight that it exhibits a higher hydrogen storage capacity (16 mg g(-1) ) than those of reported COFs at 77 K and 1 bar.

17.
Angew Chem Int Ed Engl ; 54(22): 6536-9, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25873264

RESUMO

Singlet oxygen ((1) O2 ) is of great interest because of its potential applications in photodynamic therapy, photooxidation of toxic molecules, and photochemical synthesis. Herein, we report novel metallophthalocyanine (MPc) based conjugated microporous polymers (MPc-CMPs) as photosensitizers for the generation of (1) O2 . The rigid microporous structure efficiently improves the exposure of the majority of the MPc units to oxygen. The MPc-CMPs also exhibit an enhanced light-harvesting capability in the far-red region through their extended π-conjugation systems. Their microporous structure and excellent absorption capability for long-wavelength photons result in the MPc-CMPs showing high efficiency for (1) O2 generation upon irradiation with 700 nm light, as evident by using 1,3-diphenylisobenzofuran as an (1) O2 trap. These results indicate that MPc-CMPs can be considered as promising photosensitizers for the generation of (1) O2 .

18.
Angew Chem Int Ed Engl ; 54(30): 8704-7, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26095503

RESUMO

Ordered π-columnar structures found in covalent organic frameworks (COFs) render them attractive as smart materials. However, external-stimuli-responsive COFs have not been explored. Here we report the design and synthesis of a photoresponsive COF with anthracene units as the photoresponsive π-building blocks. The COF is switchable upon photoirradiation to yield a concavo-convex polygon skeleton through the interlayer [4π+4π] cycloaddition of anthracene units stacked in the π-columns. This cycloaddition reaction is thermally reversible; heating resets the anthracene layers and regenerates the COF. These external-stimuli-induced structural transformations are accompanied by profound changes in properties, including gas adsorption, π-electronic function, and luminescence. The results suggest that COFs are useful for designing smart porous materials with properties that are controllable by external stimuli.

19.
Adv Mater ; : e2405328, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021267

RESUMO

Fluorine-containing 2D polymer (F-2DP) film is a desired system to regulate the charge transport in organic electronics but rather rarely reports due to the limited fluorine-containing building blocks and difficulties in synthesis. Herein, a novel polar molecule with antiparallel columnar stacking is synthesized and further embedded into an F-2DP system to control over the crystallinity of F-2DP film through self-complementary π-electronic forces. The donor-accepter-accepter'-donor' (D-A-A'-D') structure regulates the charge transportation efficiently, inducing multilevel memory behavior through stepwise charge capture and transfer processes. Thus, the device exhibits ternary memory behavior with low threshold voltage (Vth1 of 1.1 V, Vth2 of 2.0 V), clearly distinguishable resistance states (1:102:104) and ternary yield (83%). Furthermore, the stepwise formation of the charge complex endows the device with a wider range to regulate the conductive state, which allows its application in brain-inspired neuromorphic computing. Modified National Institute of Standards and Technology recognition can reach an accuracy of 86%, showing great potential in neuromorphic computing applications in the post-Moore era.

20.
Front Med (Lausanne) ; 11: 1388045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751981

RESUMO

Background: Primary dysmenorrhea (PD) is one of the most common reasons that affect the life quality of women during childbearing age. This research aims to explore the efficacy and curative effect characteristics of oral contraceptives and low-power visible-light-activated photodynamic therapy (PDT). Besides investigating the possible mechanism of PDT, we expected to find a treatment model with better efficacy and fewer side effects. Method: It was a multicenter, randomized, parallel-controlled study. Eligible participants were randomly assigned to three groups: placebo group, oral contraceptive (Marvelon) group, and the PDT group. They were treated continuously for three menstrual cycles and followed up for two cycles after treatment. The scores of the visual analog scale (VAS) and the concentration of pain-related small molecules in blood before and after treatment were recorded in each group, which can evaluate the therapeutic characteristics of different treatments. Result: Both Marvelon and PDT were effective. The effect of Marvelon appears quickly which can significantly relieve symptoms at the beginning, while PDT shows a relatively slow role. There was no significant difference in the final efficacy two cycles after treatment. The therapeutic effect was achieved by reducing the concentrations of prostaglandin 2 (PGE2) and endothelin (ET) in the blood. Conclusion: Marvelon and PDT are effective methods for the treatment of PD. The long-term efficacy of the two is similar, while the therapeutic characteristics and the side effects are different. Patients can choose the suitable way according to their individual needs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa