Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-23, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395409

RESUMO

Boletus are wild edible mushrooms that are consumed worldwide for their appealing taste and abundant production. The aim of this review was to summarize and discuss the characteristics, effects of food processing and application of Boletus worldwide. A better understanding of Boletus nutritional profiles with high carbohydrate and protein, low fat and energy. Volatile (odor compounds) and nonvolatile (free amino acids, 5'-nucleotide and nucleoside, free sugars, organic acids and umami peptides) compounds together contribute to the flavor of Boletus. Varies bioactive substances such as phenols, flavonoids, polysaccharides, tocopherols, lectins and pigment, have also been identified in Boletus, showing wide spectrum biological activities, including antioxidant, antimicrobial, antitumor, immunomodulatory, hepatoprotective, antihyperglycemic and hypotensive activities. In addition, drying, storage and cooking influenced the physical, chemical, sensory properties and biological activities of Boletus. The application of Boletus was focused on food dietary supplement, enhancement of food nutrition and function, indicating Boletus can be further developed as a functional food for human health. Further research suggestions focus on the mechanism of bioactive substances, the novel umami peptides, and the digestion and absorption of Boletus.

2.
Crit Rev Food Sci Nutr ; 63(20): 4636-4654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34839776

RESUMO

Consumers today are increasingly willing to reduce their meat consumption and adopt plant-based alternatives in their diet. As a main source of plant-based foods, cereals and legumes (CLs) together could make up for all the essential nutrients that humans consume daily. However, the consumption of CLs and their derivatives is facing many challenges, such as the poor palatability of coarse grains and vegetarian meat, the presence of anti-nutritional factors, and allergenic proteins in CLs, and the vulnerability of plant-based foods to microbial contamination. Recently, high hydrostatic pressure (HHP) technology has been used to tailor the techno-functionality of plant proteins and induce cold gelatinization of starch in CLs to improve the edible quality of plant-based products. The nutritional value (e.g., the bioavailability of vitamins and minerals, reduction of anti-nutritional factors of legume proteins) and bio-functional properties (e.g., production of bioactive peptides, increasing the content of γ-aminobutyric acid) of CLs were significantly improved as affected by HHP. Moreover, the food safety of plant-based products could be significantly improved as well. HHP lowered the risk of microbial contamination through the inactivation of numerous microorganisms, spores, and enzymes in CLs and alleviated the allergy symptoms from consumption of plant-based foods.


Assuntos
Fabaceae , Humanos , Fabaceae/química , Grão Comestível , Pressão Hidrostática , Verduras , Proteínas de Plantas
3.
J Nanosci Nanotechnol ; 18(8): 5566-5574, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29458611

RESUMO

Pt/CNTs were synthesized with an ethylene glycol reduction method, and the effects of carboxyl functionalization, ultrasonic power and the concentration of chloroplatinic acid on the catalytic activity of Pt/CNTs were investigated. The optimal performance of the Pt/CNTs catalyst was obtained when the ultrasonic power was 300 W and the concentration of chloroplatinic acid was 40 mg/mL. The durability and stability of the Pt/CNTs catalyst were considerably better compared to Pt/C, as shown by cyclic voltammetry measurement results. The trans fatty acids content of the obtained hydrogenated soybean oil (IV: 108.4 gl2/100 g oil) using Pt/CNTs as the cathode catalyst in a solid polymer electrolyte reactor was only 1.49%. The IV of hydrogenated soybean oil obtained using CNTs as carrier with Pt loading 0.1 mg/cm2 (IV: 108.4 gl2/100 g oil) was lower than carbon with a Pt loading of 0.8 mg/cm2 (IV: 109.9 gl2/100 g oil). Thus, to achive the same IV, the usage of Pt was much less when carbon nanotubes were selected as catalyst carrier compared to traditional carbon carrier. The changes of fatty acid components and the hydrogenated selectivity of octadecenoic acid were also discussed.


Assuntos
Nanotubos de Carbono , Óleo de Soja , Ácidos Graxos trans/química , Eletrólitos , Polímeros
4.
Foods ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38890937

RESUMO

Natural polyphenols have drawbacks such as instability and low bioavailability, which can be overcome by encapsulated slow-release systems. Natural polymer hydrogels are ideal materials for slow-release systems because of their high biocompatibility. In this study, Longzhua mushroom polysaccharide hydrogel (LMPH) was used to encapsulate rambutan peel polyphenols (RPP) and delay their release time to improve their stability and bioavailability. The mechanical properties, rheology, stability, swelling properties, water-holding capacity, RPP loading, and slow-release behavior of LMPH were investigated. The results showed that LMPH has adequate mechanical and rheological properties, high thermal stability, excellent swelling and water-holding capacity, and good self-healing behavior. Increasing the polysaccharide content not only improved the hardness (0.17-1.13 N) and water-holding capacity of LMPH (90.84-99.32%) but also enhanced the encapsulation efficiency of RPP (93.13-99.94%). The dense network structure slowed down the release of RPP. In particular, LMPH5 released only 61.58% at 48 h. Thus, a stable encapsulated slow-release system was fabricated using a simple method based on the properties of LMPH. The developed material has great potential for the sustained release and delivery of biologically active substances.

5.
Int J Biol Macromol ; : 134110, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047994

RESUMO

ß-Carotene is widely used in food systems because of its biological activity; however, ß-carotene has poor chemical stability and low bioavailability. Thus, researchers use encapsulated delivery systems to overcome these disadvantages. In this study, we prepared emulsion gels to encapsulate ß-carotene, using Longzhua mushroom polysaccharide (LMP), which can autonomously form weak gels. The LMP emulsion gel (LEG) exhibited a high water-holding capacity of up to 95.06 %. All samples showed adequate storage stability for 28 days. Increasing the polysaccharide content in the emulsion gel enhanced the encapsulation efficiency of ß-carotene (96.76 %-98.27 %), the release of free fatty acids (68.21 %-81.44 %), and the photostability (80.65 %-91.27 %), thermal stability (73.84 %-97.08 %), and bioaccessibility (18.28 %-30.26 %) of ß-carotene. In conclusion, LEG is a promising fat-soluble material that can be used for food-grade encapsulated delivery systems.

6.
Ultrason Sonochem ; 102: 106763, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219551

RESUMO

Edible mushrooms are high in nutrients, low in calories, and contain bioactive substances; thus, they are a valuable food source. However, the high moisture content of edible mushrooms not only restricts their storage and transportation after harvesting, but also leads to a shorter processable cycle, production and processing limitations, and a high risk of deterioration. In recent years, ultrasonic technology has been widely applied to various food production operations, including product cleaning, post-harvest preservation, freezing and thawing, emulsifying, and drying. This paper reviews applications of ultrasonic technology in the production and processing of edible mushrooms in recent years. The effects of ultrasonic technology on the drying, extraction of bioactive substances, post-harvest preservation, shelf life/preservation, freezing and thawing, and frying of edible mushrooms are discussed. In summary, the application of ultrasonic technology in the edible mushroom industry has a positive effect and promotes the development of this industry.


Assuntos
Agaricales , Dessecação , Congelamento
7.
Foods ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38672923

RESUMO

The potential of PulY103A (a moderate amylopullulanase originating from Bacillus megaterium) for resistant starch production under moderate conditions (40 °C; a pH of 6.5) was investigated. PulY103A was much more suitable for pea resistant starch production with a high growth rate of 3.63. The pea resistant starch (PSpa) produced with PulY103A had lower levels of swelling power and solubility and a better level of thermostability than native pea starch (PSn) and autoclaved PS (PSa). The starch crystallinity pattern was B + V, which indicated that the PSpa belonged to RS types III + V. In addition, PSpa was used for breadmaking. The results showed that the bread quality was not significantly influenced compared to the control group when the content of PSpa was under 10% (p > 0.05). The bread supplemented with 10% PSpa had a significantly increased TDF content compared to that of the control (p < 0.05). Moreover, the in vitro mineral bioavailability of the bread sample was influenced gently compared to other dietary fibers, and the bread sample changed from a high-glycemic-index (GI) food to a medium-GI food corresponding to white bread at the same concentration of PSpa. These results indicated that PSpa is a good candidate for the production of dietary foods.

8.
Food Chem ; 457: 140105, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38905828

RESUMO

Octenyl succinic anhydride (OSA)-modified starch is a commonly used food emulsifier and its emulsifying properties are positively correlated with the degree of substitution (DS). However, the maximum concentration of OSA in starch approved by the FDA and the China National Food Safety Standards is 3%. This study aims to enhance the emulsifying properties of OSA-modified waxy adlay seed starch by gelatinization under a limited DS and investigate its use in preparing delivery systems. The gelatinized OSA starch exhibited a more flexible macromolecular structure and better emulsifying activity (20.19 m2/g). The gelatinized OSA starch-stabilized astaxanthin-loaded emulsions showed high retention of astaxanthin (>50%) and long-term stability (56 days). In vitro digestion, the emulsion system showed a protective effect on astaxanthin, and the bioaccessibility of astaxanthin was increased to 16.32%. This study indicated that gelatinization could enhance the emulsifying properties of OSA starch, and this starch-stabilized emulsion was an effective system for astaxanthin.

9.
Foods ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766204

RESUMO

Different drying methods affect the quality of foods. The aim of this study is to explore the effects of seven drying methods, including hot air drying at 60 °C and 80 °C, ultrasound-assisted hot air drying at 60 °C and 80 °C, microwave drying, vacuum microwave drying, and vacuum freeze-drying, on the quality and nonvolatile flavor components of Oudemansiella raphanipes. The vacuum freeze-drying resulted in minimal collapse, mild shrinkage at the macroscopic level, and the formation of uniform pores at the microscopic level on the surfaces of O. raphanipes mushrooms. In addition, vacuum freeze-drying can improve the color attributes of the mushrooms. Therefore, the appearance and shape of vacuum freeze-drying treated O. raphanipes were closest to those of fresh mushrooms. We found that ultrasound-assisted treatment can effectively shorten the drying time of O. raphanipes. The drying time of ultrasound-assisted hot air drying at 60 °C was 20% shorter than that of hot air drying at 60 °C, and the drying time of ultrasound-assisted hot air drying at 80 °C was 37.5% shorter than that of hot air drying at 80 °C. The analysis of the nonvolatile flavor components showed that the ultrasound-assisted hot air drying at 60 °C of the O. raphanipes sample had the highest content of free amino acids (83.78 mg/g) and an equivalent umami concentration value (1491.33 monosodium glutamate/100 g). The vacuum freeze-drying treated O. raphanipes had the highest 5'-nucleotide content of 2.44 mg/g. Therefore, vacuum freeze-drying and ultrasound-assisted hot air drying at 60 °C, followed by vacuum microwave drying, might protect the flavor components of O. raphanipes to the greatest extent. However, microwave drying, hot air drying at 80 °C, and ultrasound-assisted hot air drying at 80 °C could destroy the flavor components of O. raphanipes during drying. The results of this study provided data support for the industrial production of dried O. raphanipes.

10.
Food Chem ; 429: 136928, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37480779

RESUMO

A novel and easy-to-prepare plasmonic nanoparticles doped semiconductor substrate-Zn@ZnO@Ag chip with ultra-high surface-enhanced Raman scattering (SERS) activity was fabricated for label-free, rapid and sensitive analysis of norfloxacin. The Zn@ZnO array was synthesized by surface oxidation at low temperature, followed by in-situ reduction to form leaf-like AgNPs on Zn@ZnO array without extra reducing agent, thus fabricating a Zn@ZnO@Ag chip. The ultra-high SERS activity is attributed to the synergistic effect of semiconductor characteristics of ZnO and surface plasmon resonance properties of leaf-like AgNPs. The possible enhancement mechanism was verified by density functional theory simulations. The proposed SERS method showed a wide linear range (3.0-500.0 µg/L) and low limit of detection (0.8 µg/L) for norfloxacin analysis. High sensitivity, good selectivity and acceptable recoveries (82.7-113.6%) in real sample analysis were obtained. This study offers a promising SERS chip-based platform for norfloxacin detection in the field.


Assuntos
Leite , Óxido de Zinco , Animais , Norfloxacino , Análise Espectral Raman , Ração Animal , Peixes , Zinco
11.
Foods ; 12(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509798

RESUMO

The effect of different ultrasound pretreatment powers (0-500 W) before hot air drying on the moisture migration and quality of Cantharellus cibarius (C. cibarius) was investigated in this study. The results showed that the ultrasound pretreatment accelerated the drying rate. When the ultrasound power was 400 W, the drying time of C. cibarius was reduced by 18.90% compared with the control group. The low-field nuclear magnetic resonance (LF-NMR) and magnetic resonance imaging (MRI) results showed that the ultrasound pretreatment increased the water mobility in C. cibarius. The scanning electron microscopy (SEM) results revealed that the ultrasound pretreatment promoted the expansion of intercellular pores. In addition, the rehydration capacity and quality characteristics of the ultrasound-pretreated dried C. cibarius were better than those of the control group. Overall, this study concluded that ultrasound pretreatment is a promising pretreatment method for the hot air drying of C. cibarius products to reduce the total drying time significantly and improve the retention rate of the total phenolics and flavonoids of dried C. cibarius.

12.
J Food Sci ; 88(12): 4853-4866, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872789

RESUMO

In this study, the functional properties of a mixture consisting of Tremella aurantialba powder (TAP) and wheat flour were investigated. Further, the effects of adding 0%, 1%, 3%, 5%, and 10% TAP on the physical properties of bread, as well as its glucose release, microstructure, and rheology during in vitro simulated digestion were studied. The water-holding, oil-holding, and swelling capacities of wheat flour were significantly enhanced (p < 0.05) with the increase of TAP. The addition of TAP increased the hardness, chewiness, gumminess, and moisture content and darkened the color of the bread. Sensory evaluation showed that adding the 3% of TAP could produce bread that satisfies the requirements of consumers. Furthermore, adding TAP could inhibit the release of glucose from the digesta into the dialysis solution, especially the addition of 10% TAP reduced the release of bread glucose by 23.81%. This phenomenon might be related to the increased viscosity of the digesta and the smooth physical barrier on the surface of starch granules during simulated in vitro digestion of bread. Therefore, as a natural food, T. aurantialba has great potential in improving the functional properties of bread and the application of starch matrix products.


Assuntos
Pão , Glucose , Farinha , Triticum/química , Reologia , Amido/química
13.
Foods ; 12(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509795

RESUMO

In today's food industry, the potential of bioactive compounds in preventing many chronic diseases has garnered significant attention. Many delivery systems have been developed to encapsulate these unstable bioactive compounds. Emulsion gels, as colloidal soft-solid materials, with their unique three-dimensional network structure and strong mechanical properties, are believed to provide excellent protection for bioactive substances. In the context of constructing carriers for bioactive materials, proteins are frequently employed as emulsifiers or gelling agents in emulsions or protein gels. However, in emulsion gels, when protein is used as an emulsifier to stabilize the oil/water interface, the gelling properties of proteins can also have a great influence on the functionality of the emulsion gels. Therefore, this paper aims to focus on the role of proteins' emulsifying and gelling properties in emulsion gels, providing a comprehensive review of the formation and modification of protein-based emulsion gels to build high-quality emulsion gel systems, thereby improving the stability and bioavailability of embedded bioactive substances.

14.
Int J Biol Macromol ; 242(Pt 1): 124839, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172703

RESUMO

In this study, superior modified starch was prepared using ultrasonic and enzymatic treatments to confirm the potential of using adlay seed starch (ASS) in Pickering emulsions. Octenyl succinic anhydride (OSA)-modified starches, such as OSA-UASS, OSA-EASS, and OSA-UEASS, were prepared using ultrasonic, enzymatic, and combined ultrasonic and enzymatic treatments, respectively. The effects of these treatments on the structure and properties of ASS were evaluated to elucidate their influence on starch modification. Ultrasonic and enzymatic treatments improved the esterification efficiency of ASS by changing its external and internal morphological characteristics and the crystalline structure to provide more binding sites for esterification. The degree of substitution (DS) of ASS modified by these pretreatments was 22.3-51.1 % higher than that of the OSA-modified starch without pretreatment (OSA-ASS). Fourier transform infrared and X-ray photoelectron spectroscopy results confirmed the esterification. Small particle size and near-neutral wettability indicated that OSA-UEASS was the promising emulsification stabilizer. The emulsion prepared using OSA-UEASS exhibited better emulsifying activity and emulsion stability and long-term stability for up to 30 days. These amphiphilic granules with improved structure and morphology were used to stabilize a Pickering emulsion.


Assuntos
Amido , Anidridos Succínicos , Emulsões/química , Esterificação , Sementes , Amido/química , Anidridos Succínicos/química
15.
Foods ; 13(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201086

RESUMO

This study aimed to synthesize antibacterial carbon quantum dots (SP-CDs) from polyethyleneimine and spermidine via hydrothermal reaction. It was revealed that SP-CDs, with small size (7.18 nm) and high positive charge (+31.15 mV), had good fluorescence properties and lots of amino groups on their surfaces. The inhibition effect of SP-CDs on Staphylococcus aureus was better than that towards Escherichia coli, and the SP-CDs also had an inhibitory effect on multi-drug-resistant E. coli. The mechanism of SP-CDs shows that the SP-CDs were adsorbed on the surface of the negatively charged cell membrane through electrostatic interaction. SP-CDs can cause changes in membrane permeability, resulting in a shift of the cell membrane from order to disorder and the decomposition of chemical components, followed by the leakage of cell contents, resulting in bacterial death. SP-CDs can also significantly inhibit biofilm formation, destroy mature biofilms and reduce the number of living cells. Moreover, SP-CDs had negligible antimicrobial resistance even after 18 generations of treatment. This study proves that SP-CDs effectively inhibit the proliferation of foodborne pathogens, providing new feasibility for the application of carbon-based nanomaterials in the food industry.

16.
Foods ; 10(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34945683

RESUMO

The effects of NaCl (1-3%) and kansui (0.5-1.5%) on the quality of frozen cooked noodles (FCNs) were investigated, which provided a reference for alleviating the quality deterioration of FCNs. Textural testing illustrated that the optimal tensile properties were observed in 2% NaCl (N-2) and the maximum hardness and chewiness were reached at 1% kansui (K-1). Compared to NaCl, the water absorption and cooking loss of recooked FCNs increased significantly with increasing kansui levels (p < 0.05). Rheological results confirmed NaCl and kansui improved the resistance to deformation and recovery ability of thawed dough; K-1 especially had the highest dough strength. SEM showed N-2 induced a more elongated fibrous protein network that contributed to the extensibility, while excessive levels of kansui formed a deformed membrane-like gluten network that increased the solid loss. Moisture analysis revealed that N-2 reduced the free water content, while K-1 had the lowest freezable water content and highest binding capacity for deeply adsorbed water. The N-2 and K-1 induced more ordered protein secondary structures with stronger intermolecular disulfide bonds, which were maximally improved in K-1. This study provides more comprehensive theories for the strengthening effect of NaCl and kansui on FCNs quality.

17.
Foods ; 10(11)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34829119

RESUMO

This study aims to observe the effects of coix seed oil (CSO) on HT-29 cells and investigate its possible regulation mechanism of the PI3K/Akt signaling pathway. Fatty acid analysis showed that coix seed oil mainly contains oleic acid (50.54%), linoleic acid (33.76%), palmitic acid (11.74%), and stearic acid (2.45%). Fourier transform infrared results found that the fatty acid functional groups present in the oil matched well with the vegetable oil band. The results from CCK-8 assays showed that CSO dose-dependently and time-dependently inhibited the viability of HT-29 cells in vitro. CSO inhibited cell viability, with IC50 values of 5.30 mg/mL for HT-29 obtained after 24 h treatment. Morphological changes were observed by apoptotic body/cell nucleus DNA (Hoechst 33258) staining using inverted and fluorescence microscopy. Moreover, flow cytometry analysis was used to evaluate the cell cycle and cell apoptosis. It showed that CSO induced cell apoptosis and cycle arrest in the G2 phase. Quantitative real-time PCR and Western blotting revealed that CSO induced cell apoptosis by downregulating the PI3K/AKT signaling pathway. Additionally, CSO can cause apoptosis in cancer cells by activating caspase-3, up-regulating Bax, and down-regulating Bcl-2. In conclusion, the results revealed that CSO induced G2 arrest and apoptosis of HT-29 cells by regulating the PI3K/AKT signaling pathway.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa