RESUMO
In Mediterranean regions, severe summers are becoming more common, leading to restrictions to vine productivity and yield quality, requiring sustainable practices to support this sector. We assessed the behaviour of three red grapevine varieties from the Douro Region to examine their tolerance to summer climate stress from the perspective that the less common varieties may have potential for increased use in a climate change scenario. Leaf and fruit biochemical profile, antioxidant activity and fruit colorimetric parameters were assessed at different phenological stages in Aragonez (AR), Tinto Cão (TC) and Touriga Nacional (TN) grape varieties. All three varieties exhibit significant variability in phenological timing, influenced by genetic and environmental factors. Photosynthetic pigment strategies differed among varieties. Chlorophyll content in AR was high to cope with high radiation, while TN displaying a balanced approach, and TC had lower pigment levels, with higher levels of phenolics, antioxidants, and soluble sugars, particularly during stress. The variations in berry biochemical profile highlight the distinct characteristics of the varieties. TC and TN show potential for coping with climate change, having elevated total acidity, while AR has larger and heavier berries with distinct coloration. These findings reinforce the need to study the behaviour of different varieties in each Terroir, to understand their diverse strategies to deal with summer climate stress. This will help in selecting the most suitable variety for these conditions under vineyard management in the Douro Region.
Assuntos
Antioxidantes , Clorofila , Frutas , Vitis , Vitis/crescimento & desenvolvimento , Vitis/fisiologia , Vitis/metabolismo , Clorofila/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Antioxidantes/metabolismo , Região do Mediterrâneo , Mudança Climática , Estações do Ano , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Clima , Fotossíntese/fisiologiaRESUMO
The hair bundle of sensory cells in the vertebrate ear provides an example of a noisy oscillator close to a Hopf bifurcation. The analysis of the data from both spontaneous and forced oscillations shows a strong violation of the fluctuation-dissipation theorem, revealing the presence of an underlying active process that keeps the system out of equilibrium. Nevertheless, we show that a generalized fluctuation-dissipation theorem, valid for nonequilibrium steady states, is fulfilled within the limits of our experimental accuracy and computational approximations, when the adequate conjugate degrees of freedom are chosen.
RESUMO
Two rectification mechanisms in vortex lattice dynamics in Nb films have been studied. These two effects are based on ratchet effects, that is, an ac driving force induces a net dc vortex flow. In our case, an input ac current applied to the Nb films, grown on top of arrays of Ni nanotriangles, yields an output dc voltage. These two rectification effects occur when the vortex lattice moves in periodic asymmetric potentials. These pinning potentials are induced by the array of Ni triangles. In one configuration (longitudinal effect) the driven force is applied perpendicular to the triangle reflection symmetry axis; in the second one (transverse effect) the input current is injected parallel to the triangle reflection symmetry axis. In the framework of the rocking ratchet mechanism, the appropriate Langevin equation allows us to model the experimental data, taking into account the vortex-vortex interaction.
RESUMO
In this work, an advanced discretization meshless technique is used to study the structural response of a human brain due to an impact load. The 2D and 3D brain geometrical models, and surrounding structures, were obtained through the processing of medical images, allowing to achieve a realistic geometry for the virtual model and to define the distribution of the mechanical properties accordingly with the medical images colour scale. Additionally, a set of essential and natural boundary conditions were assumed in order to reproduce a sudden impact force applied to the cranium. Then, a structural numerical analysis was performed using the Natural Neighbour Radial Point Interpolation Method (NNRPIM). The obtained results were compared with the finite element method (FEM) and a solution available in the literature. This work shows that the NNRPIM is a robust and accurate numerical technique, capable to produce results very close to other numerical approaches. In addition, the variable fields obtained with the meshless method are much smoother than the FEM corresponding solution.
Assuntos
Encéfalo/patologia , Análise Numérica Assistida por Computador , Lesões Encefálicas Traumáticas/patologia , Análise de Elementos Finitos , Cabeça , Humanos , Modelos Anatômicos , Modelos Biológicos , Estresse MecânicoRESUMO
The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven to be an effective short-term climate change mitigation strategy for Mediterranean vineyards. In this work, we address the hypothesis that kaolin could improve both the hormonal dynamics and physiological responses of grapevines growing in Douro Region, northern Portugal. For this purpose, the leaf water potential, gas exchange and chlorophyll a fluorescence parameters were monitored, as well as the abscisic acid (ABA) and indole-3-acetic acid (IAA) quantification and immunolocalization were assessed. The study revealed a slight decrease in ABA and an increase in IAA in the kaolin treatment, which in turn were associated with the improvement of physiological performance. A month after spraying, kaolin improves the water potential respectively, 30% and 17% in the predawn and midday periods. Besides, plants treated with kaolin showed higher values of stomatal conductance, net CO2 assimilation rate and intrinsic water use efficiency. Kaolin also ameliorates the effective PSII efficiency (67%), as well as the maximum quantum efficiency of photosystem II and the photosynthetic electron transport rate (>73%). These results were consistent with the higher photochemical quenching and the lower non-photochemical quenching observed in treated leaves and with the better performance obtained by the JIP test parameters. Physiological and hormonal analysis confirmed that kaolin effectively enhance grapevine summer stress tolerance.
Assuntos
Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Caulim/administração & dosagem , Reguladores de Crescimento de Plantas/metabolismo , Vitis/efeitos dos fármacos , Mudança Climática , Portugal , Vitis/fisiologiaRESUMO
The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths1. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors2 and some artificial micro-engines3-5 operate. As described by stochastic thermodynamics6,7, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit8. Here we report an experimental realization of a Carnot engine with a single optically trapped Brownian particle as the working substance. We present an exhaustive study of the energetics of the engine and analyse the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures9-11. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency-an insight that could inspire new strategies in the design of efficient nano-motors.
RESUMO
Heat waves, high light intensities and water deficit are becoming important threats in many important viticultural areas worldwide, so the implementation of efficient and cost-effective mitigation strategies is crucial for the production of premium wines while maintaining productivity. In this context, the foliar application of kaolin, a chemically inert mineral with excellent reflective properties, is being developed and experimented as a strategy to reduce the impact of heat and drought in Douro vineyards (Northern Portugal), already revealing promising results. In the present study we investigated if an improved antioxidant capacity is part of the beneficial effects of kaolin, by studying changes in the enzymatic and nonenzymatic antioxidant system in leaves and berries (cv Touriga Nacional). Results showed that mature grape berries contained higher amounts of total phenols (40%), flavonoids (24%), anthocyanins (32%) and vitamin C (12%) than fruits from control vines, and important changes were also measured in leaves. In parallel, kaolin application improved the antioxidant capacity in berries, which was correlated with the observed increased content in secondary metabolites. Kaolin application also regulated secondary metabolism at the transcriptional level through the increase in the transcript abundance of genes encoding phenylalanine ammonia lyase and chalcone synthase.
Assuntos
Antioxidantes/metabolismo , Frutas/metabolismo , Caulim/farmacologia , Fenóis/metabolismo , Folhas de Planta/metabolismo , Estações do Ano , Estresse Fisiológico/efeitos dos fármacos , Vitis/metabolismo , Antocianinas/metabolismo , Ácido Ascórbico/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Flavonoides/metabolismo , Frutas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Extratos Vegetais/metabolismo , Folhas de Planta/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Chuva , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Transcrição Gênica/efeitos dos fármacos , Vitis/efeitos dos fármacosRESUMO
In this work the maxillary central incisor is numerically analysed with an advance discretization technique--Natural Neighbour Radial Point Interpolation Method (NNRPIM). The NNRPIM permits to organically determine the nodal connectivity, which is essential to construct the interpolation functions. The NNRPIM procedure, based uniquely in the computational nodal mesh discretizing the problem domain, allows to obtain autonomously the required integration mesh, permitting to numerically integrate the differential equations ruling the studied physical phenomenon. A numerical analysis of a tooth structure using a meshless method is presented for the first time. A two-dimensional model of the maxillary central incisor, based on the clinical literature, is established and two distinct analyses are performed. First, a complete elasto-static analysis of the incisor/maxillary structure using the NNRPIM is evaluated and then a non-linear iterative bone tissue remodelling analysis of the maxillary bone, surrounding the central incisive, is performed. The obtained NNRPIM solutions are compared with other numerical methods solutions available in the literature and with clinical cases. The results show that the NNRPIM is a suitable numerical method to analyse numerically dental biomechanics problems.