Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Hum Genet ; 109(10): 1850-1866, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36150389

RESUMO

Infertility affects around 7% of the male population and can be due to severe spermatogenic failure (SPGF), resulting in no or very few sperm in the ejaculate. We initially identified a homozygous frameshift variant in FKBP6 in a man with extreme oligozoospermia. Subsequently, we screened a total of 2,699 men with SPGF and detected rare bi-allelic loss-of-function variants in FKBP6 in five additional persons. All six individuals had no or extremely few sperm in the ejaculate, which were not suitable for medically assisted reproduction. Evaluation of testicular tissue revealed an arrest at the stage of round spermatids. Lack of FKBP6 expression in the testis was confirmed by RT-qPCR and immunofluorescence staining. In mice, Fkbp6 is essential for spermatogenesis and has been described as being involved in piRNA biogenesis and formation of the synaptonemal complex (SC). We did not detect FKBP6 as part of the SC in normal human spermatocytes, but small RNA sequencing revealed that loss of FKBP6 severely impacted piRNA levels, supporting a role for FKBP6 in piRNA biogenesis in humans. In contrast to findings in piRNA-pathway mouse models, we did not detect an increase in LINE-1 expression in men with pathogenic FKBP6 variants. Based on our findings, FKBP6 reaches a "strong" level of evidence for being associated with male infertility according to the ClinGen criteria, making it directly applicable for clinical diagnostics. This will improve patient care by providing a causal diagnosis and will help to predict chances for successful surgical sperm retrieval.


Assuntos
Azoospermia , Infertilidade Masculina , Animais , Azoospermia/genética , Humanos , Infertilidade Masculina/genética , Elementos Nucleotídeos Longos e Dispersos , Masculino , Camundongos , RNA Interferente Pequeno/metabolismo , Sêmen , Espermatogênese/genética , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Testículo/patologia
2.
Nucleic Acids Res ; 51(14): 7269-7287, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37334829

RESUMO

Many genetic syndromes are linked to mutations in genes encoding factors that guide chromatin organization. Among them, several distinct rare genetic diseases are linked to mutations in SMCHD1 that encodes the structural maintenance of chromosomes flexible hinge domain containing 1 chromatin-associated factor. In humans, its function as well as the impact of its mutations remains poorly defined. To fill this gap, we determined the episignature associated with heterozygous SMCHD1 variants in primary cells and cell lineages derived from induced pluripotent stem cells for Bosma arhinia and microphthalmia syndrome (BAMS) and type 2 facioscapulohumeral dystrophy (FSHD2). In human tissues, SMCHD1 regulates the distribution of methylated CpGs, H3K27 trimethylation and CTCF at repressed chromatin but also at euchromatin. Based on the exploration of tissues affected either in FSHD or in BAMS, i.e. skeletal muscle fibers and neural crest stem cells, respectively, our results emphasize multiple functions for SMCHD1, in chromatin compaction, chromatin insulation and gene regulation with variable targets or phenotypical outcomes. We concluded that in rare genetic diseases, SMCHD1 variants impact gene expression in two ways: (i) by changing the chromatin context at a number of euchromatin loci or (ii) by directly regulating some loci encoding master transcription factors required for cell fate determination and tissue differentiation.


Assuntos
Microftalmia , Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Crista Neural/metabolismo , Microftalmia/genética , Eucromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Cromatina/genética
3.
Nucleic Acids Res ; 47(6): 2822-2839, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30698748

RESUMO

The DNA methylation epigenetic signature is a key determinant during development. Rules governing its establishment and maintenance remain elusive especially at repetitive sequences, which account for the majority of methylated CGs. DNA methylation is altered in a number of diseases including those linked to mutations in factors that modify chromatin. Among them, SMCHD1 (Structural Maintenance of Chromosomes Hinge Domain Containing 1) has been of major interest following identification of germline mutations in Facio-Scapulo-Humeral Dystrophy (FSHD) and in an unrelated developmental disorder, Bosma Arhinia Microphthalmia Syndrome (BAMS). By investigating why germline SMCHD1 mutations lead to these two different diseases, we uncovered a role for this factor in de novo methylation at the pluripotent stage. SMCHD1 is required for the dynamic methylation of the D4Z4 macrosatellite upon reprogramming but seems dispensable for methylation maintenance. We find that FSHD and BAMS patient's cells carrying SMCHD1 mutations are both permissive for DUX4 expression, a transcription factor whose regulation has been proposed as the main trigger for FSHD. These findings open new questions as to what is the true aetiology for FSHD, the epigenetic events associated with the disease thus calling the current model into question and opening new perspectives for understanding repetitive DNA sequences regulation.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Metilação de DNA , Proteínas de Homeodomínio/genética , Repetições de Microssatélites/genética , Células Cultivadas , Reprogramação Celular/genética , Atresia das Cóanas/genética , Atresia das Cóanas/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Regulação da Expressão Gênica , Células HCT116 , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Microftalmia/genética , Microftalmia/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Nariz/anormalidades
4.
BMC Med Genet ; 17(1): 66, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634379

RESUMO

BACKGROUND: The main form of Facio-Scapulo-Humeral muscular Dystrophy is linked to copy number reduction of the 4q D4Z4 macrosatellite (FSHD1). In 5 % of cases, FSHD phenotype appears in the absence of D4Z4 reduction (FSHD2). In 70-80 % of these patients, variants of the SMCHD1 gene segregate with 4qA haplotypes and D4Z4 hypomethylation. CASE PRESENTATION: We report a family presenting with neuromuscular symptoms reminiscent of FSHD but without D4Z4 copy reduction. We characterized the 4q35 region using molecular combing, searched for mutation in the SMCHD1 gene and determined D4Z4 methylation level by sodium bisulfite sequencing. We further investigated the impact of the SMCHD1 mutation at the protein level and on the NMD-dependent degradation of transcript. In muscle, we observe moderate but significant reduction in D4Z4 methylation, not correlated with DUX4-fl expression. Exome sequencing revealed a heterozygous insertion of 7 bp in exon 37 of the SMCHD1 gene producing a loss of frame with premature stop codon 4 amino acids after the insertion (c.4614-4615insTATAATA). Both wild-type and mutated transcripts are detected. CONCLUSION: The truncated protein is absent and the full-length protein level is similar in patients and controls indicating that in this family, FSHD is not associated with SMCHD1 haploinsufficiency.


Assuntos
Proteínas Cromossômicas não Histona/genética , Metilação de DNA , Repetições de Microssatélites , Distrofia Muscular Facioescapuloumeral/genética , Mutação , Segregação de Cromossomos , Cromossomos Humanos Par 4/genética , Humanos , Linhagem
5.
Nat Commun ; 15(1): 3734, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702312

RESUMO

Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.


Assuntos
Desmetilação do DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA , Células Germinativas , Animais , Feminino , Humanos , Masculino , Camundongos , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Epigênese Genética , Células Germinativas/metabolismo , Meiose/genética , Camundongos Knockout , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Síntese de DNA Translesão
6.
Cells ; 9(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585982

RESUMO

Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic cells have revolutionized the fields of cell biology and disease modeling. However, the number protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain limited, and partly mimic the complexity of mature skeletal muscle. Methods: We used a novel combination of small molecules added in a precise sequence for the simultaneous codifferentiation of human iPSCs into skeletal muscle cells and motor neurons. Results: We show that the presence of both cell types reduces the production time for millimeter-long multinucleated muscle fibers with sarcolemmal organization. Muscle fiber contractions are visible in 19-21 days, and can be maintained over long period thanks to the production of innervated multinucleated mature skeletal muscle fibers with autonomous cell regeneration of PAX7-positive cells and extracellular matrix synthesis. The sequential addition of specific molecules recapitulates key steps of human peripheral neurogenesis and myogenesis. Furthermore, this organoid-like culture can be used for functional evaluation and drug screening. Conclusion: Our protocol, which is applicable to hiPSCs from healthy individuals, was validated in Duchenne Muscular Dystrophy, Myotonic Dystrophy, Facio-Scapulo-Humeral Dystrophy and type 2A Limb-Girdle Muscular Dystrophy, opening new paths for the exploration of muscle differentiation, disease modeling and drug discovery.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Distrofia Muscular de Duchenne/fisiopatologia , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Humanos
7.
Sci Rep ; 9(1): 10327, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316120

RESUMO

Facio-Scapulo Humeral dystrophy (FSHD) is the third most common myopathy, affecting 1 amongst 10,000 individuals (FSHD1, OMIM #158900). This autosomal dominant pathology is associated in 95% of cases with genetic and epigenetic alterations in the subtelomeric region at the extremity of the long arm of chromosome 4 (q arm). A large proportion of the remaining 5% of cases carry a mutation in the SMCHD1 gene (FSHD2, OMIM #158901). Here, we explored the 3D organization of the 4q35 locus by three-dimensions DNA in situ fluorescent hybridization (3D-FISH) in primary fibroblasts isolated from patients and healthy donors. We found that D4Z4 contractions and/or SMCHD1 mutations impact the spatial organization of the 4q35 region and trigger changes in the expression of different genes. Changes in gene expression were corroborated in muscle biopsies suggesting that the modified chromatin landscape impelled a modulation in the level of expression of a number of genes across the 4q35 locus in FSHD. Using induced pluripotent stem cells (hIPSC), we further examined whether chromatin organization is inherited after reprogramming or acquired during differentiation and showed that folding of the 4q35 region is modified upon differentiation. These results together with previous findings highlight the role of the D4Z4 macrosatellite repeat in the topological organization of chromatin and further indicate that the D4Z4-dependent 3D structure induces transcriptional changes of 4q35 genes expression.


Assuntos
Cromossomos Humanos Par 4/genética , Distrofia Muscular Facioescapuloumeral/genética , Adolescente , Adulto , Idoso , Caderinas/genética , Estudos de Casos e Controles , Cromatina/genética , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/genética , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Imageamento Tridimensional , Hibridização in Situ Fluorescente , Células-Tronco Pluripotentes Induzidas/metabolismo , Lactente , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Mutação , Adulto Jovem
8.
Neurol Genet ; 5(6): e372, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31872053

RESUMO

OBJECTIVE: To investigate the distribution of cytosine-guanine dinucleotide (CpG) sites with a variable level of DNA methylation of the D4Z4 macrosatellite element in patients with facioscapulohumeral dystrophy (FSHD). METHODS: By adapting bisulfite modification to deep sequencing, we performed a comprehensive analysis of D4Z4 methylation across D4Z4 repeats and adjacent 4qA sequence in DNA from patients with FSHD1, FSHD2, or mosaicism and controls. RESULTS: Using hierarchical clustering, we identified clusters with different levels of methylation and separated, thereby the different groups of samples (controls, FSHD1, and FSHD2) based on their respective level of methylation. We further show that deep sequencing-based methylation analysis discriminates mosaic cases for which methylation changes have never been evaluated previously. CONCLUSIONS: Altogether, our approach offers a new high throughput tool for estimation of the D4Z4 methylation level in the different subcategories of patients having FSHD. This methodology allows for a comprehensive and discriminative analysis of different regions along the macrosatellite repeat and identification of focal regions or CpG sites differentially methylated in patients with FSHD1 and FSHD2 but also complex cases such as those presenting mosaicism.

9.
Nat Genet ; 49(2): 249-255, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28067911

RESUMO

Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD.


Assuntos
Atresia das Cóanas/genética , Proteínas Cromossômicas não Histona/genética , Microftalmia/genética , Mutação de Sentido Incorreto/genética , Nariz/anormalidades , Animais , Linhagem Celular , Pré-Escolar , Epigênese Genética/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distrofia Muscular Facioescapuloumeral/genética , Xenopus laevis/genética
10.
Neurology ; 83(8): 733-42, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25031281

RESUMO

OBJECTIVE: We investigated the link between DNA hypomethylation and clinical penetrance in facioscapulohumeral dystrophy (FSHD) because hypomethylation is moderate and heterogeneous in patients and could not thus far be correlated with disease presence or severity. METHODS: To investigate the link between clinical signs of FSHD and DNA methylation, we explored 95 cases (37 FSHD1, 29 asymptomatic individuals carrying a shortened D4Z4 array, 9 patients with FSHD2, and 20 controls) by implementing 2 approaches: methylated DNA immunoprecipitation and sodium bisulfite sequencing. RESULTS: Both methods revealed statistically significant differences between asymptomatic carriers or controls and individuals with clinical FSHD, especially in the proximal region of the repeat. Absence of clinical expression in asymptomatic carriers is associated with a level of methylation similar to controls. CONCLUSIONS: We provide a proof of concept that the targeted approaches that we describe could be applied systematically to patient samples in routine diagnosis and suggest that local hypomethylation within D4Z4 might serve as a modifier for clinical expression of FSHD phenotype. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that assays for hypomethylation within the D4Z4 region accurately distinguish patients with FSHD from individuals with D4Z4 contraction without FSHD.


Assuntos
Cromossomos Humanos Par 4 , Metilação de DNA/genética , Predisposição Genética para Doença , Distrofia Muscular Facioescapuloumeral/genética , Adulto , Epigênese Genética/genética , Feminino , Testes Genéticos , Heterozigoto , Humanos , Masculino , Distrofia Muscular Facioescapuloumeral/diagnóstico , Linhagem , Penetrância , Fenótipo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa