Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Electrophoresis ; 44(1-2): 62-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35907250

RESUMO

Antibody-drug conjugates (ADCs) are a prospective class of new oncology therapeutics with the ability to deliver a cytotoxic drug to a targeted location. The concept appears simple, but ADCs are highly complex due to their intrinsic heterogeneity. Randomly conjugated ADCs, for instance, are composed of conjugated species carrying between 0 and 8 linker-drug molecules, with several positional isomers that vary in drug distribution across the antibody. The drug load, expressed as drug-to-antibody ratio (DAR), is a critical quality attribute and should be well controlled, together with the distribution of drug molecules. Here, the impact of the duration of disulfide bond reduction on the DAR was investigated by quantitating the (isomeric) DAR species in ADCs produced with varying reduction times. Although hydrophobic interaction chromatography showed a constant DAR value as a function of reduction time, data obtained by non-reducing CE-SDS revealed an unexpected dynamic in the positional conjugated isomers. The insights obtained have improved our understanding of the correlation between the disulfide bond reduction, an important step in the manufacturing of a cysteine-conjugated ADC, and the conjugational heterogeneity.


Assuntos
Antineoplásicos , Imunoconjugados , Imunoconjugados/química , Estudos Prospectivos , Antineoplásicos/química , Interações Hidrofóbicas e Hidrofílicas , Dissulfetos
2.
Anal Biochem ; 630: 114331, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389298

RESUMO

The performance of biophysical methods used for the characterization of protein higher order structure (HOS) is key to ensure reliable structural data for drug applications, as these methods are not routinely validated. To assess the analytical performance characteristics, the impact of increasing amounts of heat-denatured material (HDM) on HOS data obtained for a monoclonal antibody (mAb) and its cysteine-conjugated antibody-drug conjugate (ADC) by a set of biophysical methods routinely used in the pharmaceutical industry was evaluated. Relationships between structural data generated by these methods were established using statistical correlation analysis. Most individual methods revealed a linear correlation with increasing amounts of HDM, in the presence of intact mAb or ADC. Overall, Pearson correlation analysis showed strong correlations between the biophysical data obtained. Moreover, biophysical methods that are generally claimed to be orthogonal, were confirmed to provide similar structural insights based on the data obtained. Some methods were capable of differentiating the impact of structural change and/or onset of protein aggregation between the mAb and the ADC. Our results underline the capabilities and performance of the biophysical characterization methods investigated, thereby substantiating these are 'scientifically sound' and 'fit for purpose': the interrogation of protein HOS as part of pharmaceutical development.


Assuntos
Anticorpos Monoclonais/química , Cisteína/química , Imunoconjugados/química , Imunoglobulina G/química , Desdobramento de Proteína
3.
Eur J Pharm Biopharm ; 191: 57-67, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37582411

RESUMO

Multi-attribute methods employing mass spectrometry are applied throughout the biopharmaceutical industry for product and process characterization purposes but are not yet widely accepted as a method for batch release and stability testing under the good manufacturing practice (GMP) regime, due to limited experience and level of comfort with the technical, compliance and regulatory aspects of its implementation at quality control (QC) laboratories. This article is the second part of a two-tiered publication aiming at providing guidance for implementation of the multi-attribute method by peptide mapping liquid chromatography mass spectrometry (MAM) in a QC laboratory. The first part [1] focuses on technical considerations, while this second part provides considerations related to GMP compliance and regulatory aspects. This publication has been prepared by a group of industry experts representing 14 globally acting major biotechnology companies under the umbrella of the European Federation of Pharmaceutical Industries and Associations (EFPIA) Manufacturing & Quality Expert Group (MQEG).


Assuntos
Indústria Farmacêutica , Laboratórios , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Controle de Qualidade
4.
Eur J Pharm Biopharm ; 188: 231-242, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37146738

RESUMO

Multi-attribute methods employing mass spectrometry are applied throughout the biopharmaceutical industry for product and process characterization purposes but are not yet widely accepted as a method for batch release and stability testing under good manufacturing practice (GMP) due to limited experience and level of comfort with the technical, compliance and regulatory aspects of its implementation at quality control (QC) laboratories. Here, current literature related to the development and application of the multi-attribute method by peptide mapping liquid chromatography mass spectrometry (MAM) is compiled with the aim of providing guidance for the implementation of MAM in a QC laboratory. This article, focusing on technical considerations, is the first part of a two-tiered publication, whereby the second part will focus on GMP compliance and regulatory aspects. This publication has been prepared by a group of industry experts representing 14 globally acting major biotechnology companies under the umbrella of the European Federation of Pharmaceutical Industries and Associations (EFPIA) Manufacturing & Quality Expert Group (MQEG).


Assuntos
Indústria Farmacêutica , Laboratórios , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos , Controle de Qualidade
5.
Cancer Res ; 66(3): 1473-80, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16452203

RESUMO

A DNA double-strand break (DSB) is highly cytotoxic; it emerges as the type of DNA damage that most severely affects the genomic integrity of the cell. It is essential that DNA DSBs are recognized and repaired efficiently, in particular, prior to mitosis, to prevent genomic instability and eventually, the development of cancer. To assess the pathways that are induced on DNA DSBs, 14 human lymphoblastoid cell lines were challenged with bleomycin for 30 and 240 minutes to establish the fast and more prolonged response, respectively. The proteomes of 14 lymphoblastoid cell lines were investigated to account for the variation among individuals. The primary DNA DSB response was expected to occur within the nucleus; therefore, the nuclear extracts were considered. Differential analysis was done using two-dimensional difference in gel electrophoresis; paired ANOVA statistics were used to recognize significant changes in time. Many proteins whose nuclear levels changed statistically significantly showed a fast response, i.e., within 30 minutes after bleomycin challenge. A significant number of these proteins could be assigned to known DNA DSB response processes, such as sensing DSBs (Ku70), DNA repair through effectors (high-mobility group protein 1), or cell cycle arrest at the G(2)-M phase checkpoint (14-3-3 zeta). Interestingly, the nuclear levels of all three proteins in the INHAT complex were reduced after 30 minutes of bleomycin challenge, suggesting that this complex may have a role in changing the chromatin structure, allowing the DNA repair enzymes to gain access to the DNA lesions.


Assuntos
Proteínas Cromossômicas não Histona/fisiologia , Dano ao DNA , Reparo do DNA/fisiologia , Linfócitos/fisiologia , Proteoma/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA , Chaperonas de Histonas , Humanos , Linfócitos/metabolismo , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Proteoma/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Transcrição/metabolismo
6.
Mol Cancer Ther ; 17(11): 2389-2398, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30093567

RESUMO

Carboxylesterase 1c (CES1c) is responsible for linker-drug instability and poor pharmacokinetics (PK) of several antibody-drug conjugates (ADC) in mice, but not in monkeys or humans. Preclinical development of these ADCs could be improved if the PK in mice would more closely resemble that of humans and is not affected by an enzyme that is irrelevant for humans. SYD985, a HER2-targeting ADC based on trastuzumab and linker-drug vc-seco-DUBA, is also sensitive to CES1c. In the present studies, we first focused on the interaction between CES1c and SYD985 by size- exclusion chromatography, Western blotting, and LC/MS-MS analysis, using recombinant CES1c and plasma samples. Intriguingly, CES1c activity not only results in release of the active toxin DUBA but also in formation of a covalent bond between CES1c and the linker of vc-seco-DUBA. Mass spectrometric studies enabled identification of the CES1c cleavage site on the linker-drug and the structure of the CES1c adduct. To assess the in vivo impact, CES1c-/- SCID mice were generated that showed stable PK for SYD985, comparable to that in monkeys and humans. Patient-derived xenograft (PDX) studies in these mice showed enhanced efficacy compared with PDX studies in CES1c+/+ mice and provided a more accurate prediction of clinical efficacy of SYD985, hence delivering better quality data. It seems reasonable to assume that CES1c-/- SCID mice can increase quality in ADC development much broader for all ADCs that carry linker-drugs susceptible to CES1c, without the need of chemically modifying the linker-drug to specifically increase PK in mice. Mol Cancer Ther; 17(11); 2389-98. ©2018 AACR.


Assuntos
Carboxilesterase/deficiência , Imunoconjugados/farmacologia , Imunoconjugados/farmacocinética , Animais , Carboxilesterase/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/química , Camundongos Knockout , Camundongos SCID , Peptídeos/química , Ratos Wistar , Trastuzumab/química , Resultado do Tratamento
7.
Proteomics ; 6(24): 6394-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17163440

RESUMO

Modification through beta-elimination has proven to be a reliable first step in the approach for enrichment of serine/threonine-phopshorylated (Ser-/Thr) peptides. However, under harsh basic conditions, Ser-/Thr-glycosylated peptides are susceptible to beta-elimination as well. Therefore, we have optimized these conditions to achieve a beta-elimination that is highly selective for phosphorylated peptides. This is the first report of selective beta-elimination and enrichment of phosphorylated peptides in the presence of glycosylated peptides.


Assuntos
Glicopeptídeos/isolamento & purificação , Fosfopeptídeos/isolamento & purificação , Glicopeptídeos/síntese química , Glicopeptídeos/química , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/isolamento & purificação , Fosfopeptídeos/síntese química , Fosfopeptídeos/química , Proteômica , Serina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Treonina/química
8.
J Proteome Res ; 5(9): 2380-8, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16944950

RESUMO

As a result of the complexity and dynamic range of the cellular proteome, including mutual interactions and interactions with other molecules, focused proteomic approaches are important to study subsets of physiologically important proteins. In one such approach, a small molecule or part of a protein is immobilized on a solid phase and used as bait to fish out interacting proteins from complex mixtures such as cellular lysates. Here, such a chemical proteomics experiment is presented to explore the range of proteins that interact with the N-terminal tail of core histones. Therefore, a core histone consensus N-terminal tail (NTT) peptide was synthesized and immobilized on agarose. Interactions between histone NTTs and proteins are extremely important as they regulate chromatin structure, which is important in many DNA-related processes, like transcription and DNA repair. Induction of DNA damage, like DNA double strand breaks, is known to trigger chromatin remodeling events through interactions between histone NTTs and so-called histone chaperones. Therefore, we set out to investigate specific changes in interactions of nuclear proteins before and shortly after DNA double strand break induction. Over 700 proteins were found to bind specifically to the NTT peptide, which makes our study the most comprehensive proteomic survey of the broad spectrum of nuclear proteins interacting with the NTT of core histones in nucleosomes. Apart from a few exceptions, the abundance of the majority of NTT binding proteins was found to be unchanged following DNA damage. However, an in-depth analysis of protein phosphorylation (we detected more than 90 unique sites in about 60 proteins) revealed that the phosphorylation status of several proteins involved in chromatin remodeling changes upon DNA damage. We observed that in these differentially phosphorylated chaperones are part of closely interacting protein complexes involved in regulatory mechanisms at the crossroads of nucleosome assembly, DNA replication, transcription, and the early onset of DNA damage repair.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Dano ao DNA , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Cromatografia por Troca Iônica , Cromatografia Líquida , Histonas/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/análise
9.
Mol Cell Proteomics ; 4(3): 255-66, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15632418

RESUMO

Quantitative protein expression profiling is a crucial part of proteomics and requires methods that are able to efficiently provide accurate and reproducible differential expression values for proteins in two or more biological samples. In this report we evaluate in a direct comparative assessment two state-of-the-art quantitative proteomic approaches, namely difference in gel electrophoresis (DiGE) and metabolic stable isotope labeling. Therefore, Saccharomyces cerevisiae was grown under well defined experimental conditions in chemostats under two single nutrient-limited growth conditions using (14)N- or (15)N-labeled ammonium sulfate as the single nitrogen source. Following lysis and protein extraction from the two yeast samples, the proteins were fluorescently labeled using different fluorescent CyDyes. Subsequently, the yeast samples were mixed, and the proteins were separated by two-dimensional gel electrophoresis. Following in-gel digestion, the resulting peptides were analyzed by mass spectrometry using a MALDI-TOF mass spectrometer. Relative ratios in protein expression between these two yeast samples were determined using both DiGE and metabolic stable isotope labeling. Focusing on a small, albeit representative, set of proteins covering the whole gel range, including some protein isoforms and ranging from low to high abundance, we observe that the correlation between these two methods of quantification is good with the differential ratios determined following the equation R(Met.Lab.) = 0.98R(DiGE) with r(2) = 0.89. Although the correlation between DiGE and metabolic stable isotope labeling is exceptionally good, we do observe and discuss (dis)advantages of both methods as well as in relation to other (quantitative) approaches.


Assuntos
Proteoma/análise , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/química , Eletroforese em Gel Bidimensional , Corantes Fluorescentes , Marcação por Isótopo , Isótopos de Nitrogênio , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Chembiochem ; 6(12): 2271-80, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16254931

RESUMO

Gaining insight into phosphoproteomes is of the utmost importance for understanding regulation processes such as signal transduction and cellular differentiation. While the identification of phosphotyrosine-containing amino acid sequences in peptides and proteins is now becoming possible, mainly because of the availability of high-affinity antibodies, no general and robust methodology allowing the selective enrichment and analysis of serine- and threonine-phosphorylated proteins and peptides is presently available. The method presented here involves chemical modification of phosphorylated serine or threonine residues and their subsequent derivatization with the aid of a multifunctional probe molecule. The designed probe contains four parts: a reactive group that is used to bind specifically to the modified phosphopeptide, an optional part in which heavy isotopes can be incorporated, an acid-labile linker, and an affinity tag for the selective enrichment of modified phosphopeptides from complex mixtures. The acid-cleavable linker allows full recovery from the affinity-purified material and removal of the affinity tag prior to MS analysis. The preparation of a representative probe molecule containing a biotin affinity tag and its applicability in phosphoproteome analysis is shown in a number of well-defined model systems of increasing degrees of complexity. Amounts of phosphopeptide as low as 1 nmol can be modified and enriched from a mixture of peptides. During the development of the beta-elimination/nucleophilic addition protocol, special attention was paid to the different experimental parameters that might affect the chemical-modification steps carried out on phosphorylated residues.


Assuntos
Sondas Moleculares/síntese química , Peptídeos/isolamento & purificação , Fosfoproteínas/isolamento & purificação , Proteômica/métodos , Marcadores de Afinidade , Fosforilação , Serina , Treonina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa