Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 59(2): 450-480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37888298

RESUMO

Artificial intelligence (AI) has the potential to bring transformative improvements to the field of radiology; yet, there are barriers to widespread clinical adoption. One of the most important barriers has been access to large, well-annotated, widely representative medical image datasets, which can be used to accurately train AI programs. Creating such datasets requires time and expertise and runs into constraints around data security and interoperability, patient privacy, and appropriate data use. Recognizing these challenges, several institutions have started curating and providing publicly available, high-quality datasets that can be accessed by researchers to advance AI models. The purpose of this work was to review the publicly available MRI datasets that can be used for AI research in radiology. Despite being an emerging field, a simple internet search for open MRI datasets presents an overwhelming number of results. Therefore, we decided to create a survey of the major publicly accessible MRI datasets in different subfields of radiology (brain, body, and musculoskeletal), and list the most important features of value to the AI researcher. To complete this review, we searched for publicly available MRI datasets and assessed them based on several parameters (number of subjects, demographics, area of interest, technical features, and annotations). We reviewed 110 datasets across sub-fields with 1,686,245 subjects in 12 different areas of interest ranging from spine to cardiac. This review is meant to serve as a reference for researchers to help spur advancements in the field of AI for radiology. LEVEL OF EVIDENCE: Level 4 TECHNICAL EFFICACY: Stage 6.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiologia/métodos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
2.
J Imaging Inform Med ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980624

RESUMO

Reliable and trustworthy artificial intelligence (AI), particularly in high-stake medical diagnoses, necessitates effective uncertainty quantification (UQ). Existing UQ methods using model ensembles often introduce invalid variability or computational complexity, rendering them impractical and ineffective in clinical workflow. We propose a UQ approach based on deep neuroevolution (DNE), a data-efficient optimization strategy. Our goal is to replicate trends observed in expert-based UQ. We focused on language lateralization maps from resting-state functional MRI (rs-fMRI). Fifty rs-fMRI maps were divided into training/testing (30:20) sets, representing two labels: "left-dominant" and "co-dominant." DNE facilitated acquiring an ensemble of 100 models with high training and testing set accuracy. Model uncertainty was derived from distribution entropies over the 100 model predictions. Expert reviewers provided user-based uncertainties for comparison. Model (epistemic) and user-based (aleatoric) uncertainties were consistent in the independently and identically distributed (IID) testing set, mainly indicating low uncertainty. In a mostly out-of-distribution (OOD) holdout set, both model and user-based entropies correlated but displayed a bimodal distribution, with one peak representing low and another high uncertainty. We also found a statistically significant positive correlation between epistemic and aleatoric uncertainties. DNE-based UQ effectively mirrored user-based uncertainties, particularly highlighting increased uncertainty in OOD images. We conclude that DNE-based UQ correlates with expert assessments, making it reliable for our use case and potentially for other radiology applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa