Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(4): 045002, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580461

RESUMO

We present experimental evidence supported by simulations of a relativistic ionization wave launched into a surrounding gas by the sheath field of a plasma filament with high energy electrons. Such a filament is created by irradiating a clustering gas jet with a short pulse laser (115 fs) at a peak intensity of 5×10(17) W/cm2. We observe an ionization wave propagating radially through the gas for about 2 ps at 0.2-0.5 c after the laser has passed, doubling the initial radius of the filament. The gas is ionized by the sheath field, while the longevity of the wave is explained by a moving field structure that traps the high energy electrons near the boundary, maintaining a strong sheath field despite the significant expansion of the plasma.

2.
Phys Rev Lett ; 113(18): 184801, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25396373

RESUMO

We report on a novel compact laser-driven neutron source with an unprecedented short pulse duration (<50 ps) and high peak flux (>10(18) n/cm(2)/s), an order of magnitude higher than any existing source. In our experiments, high-energy electron jets are generated from thin (<3 µm) plastic targets irradiated by a petawatt laser. These intense electron beams are employed to generate neutrons from a metal converter. Our method opens venues for enhancing neutron radiography contrast and for creating astrophysical conditions of heavy element synthesis in the laboratory.

3.
Phys Rev Lett ; 111(5): 055002, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23952411

RESUMO

Two different methods have been employed to determine the plasma temperature in a laser-cluster fusion experiment on the Texas Petawatt laser. In the first, the temperature was derived from time-of-flight data of deuterium ions ejected from exploding D(2) or CD(4) clusters. In the second, the temperature was measured from the ratio of the rates of two different nuclear fusion reactions occurring in the plasma at the same time: D(d,(3)He)n and (3)He(d,p)(4)He. The temperatures determined by these two methods agree well, which indicates that (i) the ion energy distribution is not significantly distorted when ions travel in the disassembling plasma; (ii) the kinetic energy of deuterium ions, especially the "hottest part" responsible for nuclear fusion, is well described by a near-Maxwellian distribution.

4.
Phys Rev Lett ; 111(8): 082502, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010431

RESUMO

The plasma astrophysical S factor for the 3He(d,p)4He fusion reaction was measured for the first time at temperatures of few keV, using the interaction of intense ultrafast laser pulses with molecular deuterium clusters mixed with 3He atoms. Different proportions of D2 and 3He or CD4 and 3He were mixed in the gas target in order to allow the measurement of the cross section for the 3He(d,p)4He reaction. The yield of 14.7 MeV protons from the 3He(d,p)4He reaction was measured in order to extract the astrophysical S factor at low energies. Our result is in agreement with other S factor parametrizations found in the literature.

5.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37737696

RESUMO

We report on the commissioning of a full aperture backscatter diagnostics station for the kilojoule, nanosecond high repetition rate L4n laser operating at a wavelength of 527 nm at the Extreme Light Infrastructure (ELI) - Beamlines, Dolni Brezany, Czech Republic. Light scattered back from laser-plasma interaction into the cone of the final focusing lens is captured and split into different channels to measure the signatures of laser plasma instabilities from stimulated Brillouin scattering, stimulated Raman scattering, and two plasmon decay with respect to back scattered energy, its spectrum, and its temporal profile. The performance was confirmed in a commissioning experiment with more than 800 shots at laser intensities ranging from 0.5 × 1013 to 1.1 × 1015 W cm-2. These diagnostics are permanently installed at ELI Beamlines, and can be used to understand the details of laser-plasma interactions in experiments with kJ and 527 nm light. The large number of shots that can be collected in an experimental campaign will allow us to study the details of the laser-plasma interaction with a high level of confidence.

6.
Phys Rev Lett ; 108(13): 133401, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22540697

RESUMO

Explosions of large Xe clusters ( ~ 11,000) irradiated by femtosecond pulses of 850 eV x-ray photons focused to an intensity of up to 10(17) W/cm(2) from the Linac Coherent Light Source were investigated experimentally. Measurements of ion charge-state distributions and energy spectra exhibit strong evidence for the formation of a Xe nanoplasma in the intense x-ray pulse. This x-ray produced Xe nanoplasma is accompanied by a three-body recombination and hydrodynamic expansion. These experimental results appear to be consistent with a model in which a spherically exploding nanoplasma is formed inside the Xe cluster and where the plasma temperature is determined by photoionization heating.

7.
Rev Sci Instrum ; 93(6): 063103, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777994

RESUMO

A new type of compact high-resolution high-sensitivity gamma-ray spectrometer for short-pulse intense gamma-rays (250 keV to 50 MeV) has been developed by combining the principles of scintillators and attenuation spectrometers. The first prototype of this scintillator attenuation spectrometer (SAS) was tested successfully in Trident laser experiments at LANL. Later versions have been used extensively in the Texas Petawatt laser experiments in Austin, TX, and more recently in OMEGA-EP laser experiments at LLE, Rochester, NY. The SAS is particularly useful for high-repetition-rate laser applications. Here, we give a concise description of the design principles, capabilities, and sample preliminary results of the SAS.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 015401, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19658765

RESUMO

The optical conductivity of a dense femtosecond laser-heated aluminum plasma heated to 0.1-1.5 eV was measured using frequency-domain interferometry with chirped pulses, permitting simultaneous observation of optical probe reflectivity and probe pulse phase shift. Coupled with published models of bound-electron contributions to the conductivity, these two independent experimental data yielded a direct measurement of both real and imaginary components of the plasma conductivity.

9.
Rev Sci Instrum ; 90(8): 083302, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472598

RESUMO

Calibrated diagnostics for energetic particle detection allow for the systematic study of charged particle sources. The Fujifilm BAS-TR imaging plate (IP) is a reusable phosphorescent detector for radiation applications such as x-ray and particle beam detection. The BAS-TR IP has been absolutely calibrated to many low-Z (low proton number) ions, and extending these calibrations to the mid-Z regime is beneficial for the study of laser-driven ion sources. The Texas Petawatt Laser was used to generate energetic ions from a 100 nm titanium foil, and charge states Ti10+ through Ti12+, ranging from 6 to 27 MeV, were analyzed for calibration. A plastic detector of CR-39 with evenly placed slots was mounted in front of the IP to count the number of ions that correspond with the IP levels of photo-stimulated luminescence (PSL). A response curve was fitted to the data, yielding a model of the PSL signal vs ion energy. Comparisons to other published response curves are also presented, illustrating the trend of PSL/nucleon decreasing with increasing ion mass.

10.
Phys Rev E ; 95(3-1): 031201, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415304

RESUMO

We present equation of state (EOS) measurements of solid-density copper heated to 5-10 eV. A copper sample was heated isochorically by hydrogen ions accelerated from an adjacent foil by a high intensity pulsed laser, and probed optically. The measured temperature and expansion are compared against simulations using the most up-to-date wide range EOS tables available.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(1 Pt 2): 016403, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16907194

RESUMO

We have studied experimentally the angular distributions of fusion neutrons from plasmas of multi-keV ion temperature, created by 40 fs, multi-TW laser pulses in dense plumes of D2 and CD4 clusters. A slight anisotropy in the neutron emission is observed. We attribute this anisotropy to the fact that the differential cross section for DD fusion is anisotropic even at low collision energies, and this, coupled with the geometry of the gas jet target, leads to beam-target neutrons that are slightly directed. The qualitative features of this anisotropy are confirmed by Monte Carlo simulations.

12.
Rev Sci Instrum ; 87(1): 013107, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827309

RESUMO

A system of two collinear probe beams with different wavelengths and pulse durations was used to capture simultaneously snapshot interferograms and streaked interferograms of laser produced plasmas. The snapshots measured the two dimensional, path-integrated, electron density on a charge-coupled device while the radial temporal evolution of a one dimensional plasma slice was recorded by a streak camera. This dual-probe combination allowed us to select plasmas that were uniform and axisymmetric along the laser direction suitable for retrieving the continuous evolution of the radial electron density of homogeneous plasmas. Demonstration of this double probe system was done by measuring rapidly evolving plasmas on time scales less than 1 ns produced by the interaction of femtosecond, high intensity, laser pulses with argon gas clusters. Experiments aimed at studying homogeneous plasmas from high intensity laser-gas or laser-cluster interaction could benefit from the use of this probing scheme.

13.
Phys Rev E ; 94(3-1): 033208, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739766

RESUMO

We report on experiments irradiating isolated plastic spheres with a peak laser intensity of 2-3×10^{20}Wcm^{-2}. With a laser focal spot size of 10 µm full width half maximum (FWHM) the sphere diameter was varied between 520 nm and 19.3 µm. Maximum proton energies of ∼25 MeV are achieved for targets matching the focal spot size of 10 µm in diameter or being slightly smaller. For smaller spheres the kinetic energy distributions of protons become nonmonotonic, indicating a change in the accelerating mechanism from ambipolar expansion towards a regime dominated by effects caused by Coulomb repulsion of ions. The energy conversion efficiency from laser energy to proton kinetic energy is optimized when the target diameter matches the laser focal spot size with efficiencies reaching the percent level. The change of proton acceleration efficiency with target size can be attributed to the reduced cross-sectional overlap of subfocus targets with the laser. Reported experimental observations are in line with 3D3V particle in cell simulations. They make use of well-defined targets and point out pathways for future applications and experiments.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(3 Pt 2): 036408, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16241580

RESUMO

The compact multipulse terawatt (COMET) laser facility at LLNL was used to irradiate Al-coated 2-50 microm Ti foils with approximately 10(19) W cm(-2) , 500 fs, 3-6 J laser pulses. Laser-plasma interactions on the front side of the target generate hot electrons with sufficient energy to excite inner-shell electrons in Ti, creating Kalpha emission which has been measured using a focusing spectrometer with spatial resolution aimed at the back surface of the targets. The spatial extent of the emission varies with target thickness. The high spectral resolution (lambda/Deltalambda approximately equal to 3800) is sufficient to measure broadening of the Kalpha emission feature due to the emergence of blueshifted satellites from ionized Ti in a heated region of the target. A self-consistent-field model is used to spectroscopically diagnose thermal electron temperatures up to 40 eV in the strongly coupled Ti plasmas.

15.
Sci Rep ; 5: 13968, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26364764

RESUMO

We report results of new pair creation experiments using ~100 Joule pulses of the Texas Petawatt Laser to irradiate solid gold and platinum targets, with intensities up to ~1.9 × 10(21) W.cm(-2) and pulse durations as short as ~130 fs. Positron to electron (e+/e-) ratios >15% were observed for many thick disk and rod targets, with the highest e+/e- ratio reaching ~50% for a Pt rod. The inferred pair yield was ~ few ×10(10) with emerging pair density reaching ~10(15)/cm(3) so that the pair skin depth becomes < pair jet transverse size. These results represent major milestones towards the goal of creating a significant quantity of dense pair-dominated plasmas with e+/e- approaching 100% and pair skin depth ≪ pair plasma size, which will have wide-ranging applications to astrophysics and fundamental physics.

16.
Opt Express ; 6(12): 236-42, 2000 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19404356

RESUMO

Light scattering in large noble gas clusters irradiated by intense laser pulses was studied and compared to absorption measurements. The scattering signal shows the presence of a peak, when the pulse width was varied, similar to one previously reported in absorption measurements. The peak of the scattering, however, occurs at a longer pulse width than for absorption. This result disagrees with a simple simulation and may be due to propagation or non-linear effects not included in the model.

17.
Phys Rev Lett ; 84(12): 2634-7, 2000 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-11017287

RESUMO

Recent experiments on the interaction of intense, ultrafast laser pulses with large van der Waals bonded clusters have shown that these clusters can explode with substantial kinetic energy. By driving explosions in deuterium clusters with a 35 fs laser pulse, we have accelerated ions to sufficient kinetic energy to produce DD nuclear fusion. By diagnosing the fusion yield through measurements of 2.45 MeV fusion neutrons, we have found that the fusion yield from these exploding clusters varies strongly with the cluster size, consistent with acceleration of deuterons via Coulomb explosion forces.

18.
Phys Rev Lett ; 85(17): 3640-3, 2000 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-11030970

RESUMO

Exploiting the energetic interaction of intense femtosecond laser pulses with deuterium clusters, it is possible to create conditions in which nuclear fusion results from explosions of these clusters. We have conducted high-resolution neutron time-of-flight spectroscopy on these plasmas and show that they yield fast bursts of nearly monochromatic fusion neutrons with temporal duration as short as a few hundred picoseconds. Such a short, nearly pointlike source now opens up the unique possibility of using these bright neutron pulses, either as a pump or a probe, to conduct ultrafast studies with neutrons.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(2 Pt 2): 025401, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11497643

RESUMO

We present theoretical and experimental evidence that nonionizing prepulses with intensities as low as 10(8)-10(9) W/cm(2) can substantially alter high intensity laser-solid interactions. We show that prepulse-heating and vaporization of the target can lead to a preformed plasma once the vapor is ionized by the rising edge of the high-intensity pulse. Our results indicate that peak prepulse intensity is not the only important parameter to consider in determining preformed plasma thresholds, and that a more comprehensive analysis of the prepulse duration and the target material is required.

20.
Artigo em Inglês | MEDLINE | ID: mdl-25615207

RESUMO

We measured the average deuterium cluster size within a mixture of deuterium clusters and helium gas by detecting Rayleigh scattering signals. The average cluster size from the gas mixture was comparable to that from a pure deuterium gas when the total backing pressure and temperature of the gas mixture were the same as those of the pure deuterium gas. According to these measurements, the average size of deuterium clusters depends on the total pressure and not the partial pressure of deuterium in the gas mixture. To characterize the cluster source size further, a Faraday cup was used to measure the average kinetic energy of the ions resulting from Coulomb explosion of deuterium clusters upon irradiation by an intense ultrashort pulse. The deuterium ions indeed acquired a similar amount of energy from the mixture target, corroborating our measurements of the average cluster size. As the addition of helium atoms did not reduce the resulting ion kinetic energies, the reported results confirm the utility of using a known cluster source for beam-target-fusion experiments by introducing a secondary target gas.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa