RESUMO
Weed competition is the major biological stress affecting cassava production in smallholder farms in West and Central Africa, where yields are low compared with those in Asia and Latin America. Options for improved weed management are crucial in increasing productivity. Selected pre- and post-emergence herbicides, integrated with appropriate tillage and plant spacing, were tested in 96 sites in four locations in Nigeria, 24 in 2016 and 72 in 2017. Trials were split plots with six pre-emergence herbicides and no post-emergence treatment as main plots. Subplot treatments were four post-emergence herbicides, weeding with a motorized rotary weeder, short- and long-handled hoes, and no post-emergence weed control, i.e., regardless of pre-emergence treatments. Indaziflam-based treatments, irrespective of post-emergence treatment, and flumioxazin + pyroxasulfone applied pre-emergence followed by one weeding with a long-handled hoe provided >80% control of major broadleaf and grass weeds. Compared with herbicide use, farmer control practices (53%) were not efficient in controlling weeds. The highest root yield was produced where (1) s-metolachlor was combined with atrazine, and one weeding with a long-handled hoe or clethodim with lactofen, and (2) indaziflam + isoxaflutole was combined with glyphosate. An increase in root yield from 3.41 to 14.2 t ha-1 and from 3.0 to 11.99 t ha-1 was obtained where herbicides were used compared with farmers' practice and manual hoe weeding. Our results showed that integrating good agronomic practices with safe and effective use of appropriate herbicides can result in root yield >20 t ha-1. i.e., twice the national average root yield of 8-12 t ha-1, with >50% net profit. The use of appropriate herbicides can reduce the amount of manual labor required and improve livelihoods, specifically for women and children. Smallholder cassava farmers would require continuous training on the safe use and handling of herbicides to improve efficiency and prevent adverse effects on humans and the environment.
RESUMO
The probability and consequences of gene flow to wild relatives is typically considered in the environmental risk assessment of genetically engineered crops. This is a report from a discussion by a group of experts who used a problem formulation approach to consider existing information for risk assessment of gene flow from cassava (Manihot esculenta) genetically engineered for virus resistance to the 'wild' (naturalized) relative M. glaziovii in East Africa. Two environmental harms were considered in this case: (1) loss of genetic diversity in the germplasm pool, and (2) loss of valued species, ecosystem resources, or crop yield and quality due to weediness or invasiveness of wild relatives. Based on existing information, it was concluded that gene flow will occur, but it is not likely that this will reduce the genetic diversity in the germplasm pool. There is little existing information about the impact of the virus in natural populations that could be used to inform a prediction about whether virus resistance would lead to an increase in reproduction or survival, hence abundance of M. glaziovii. However, an increase in the abundance of M. glaziovii should be manageable, and would not necessarily lead to the identified environmental harms.
Assuntos
Fluxo Gênico , Manihot/genética , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/genética , África , Produtos Agrícolas/genética , Resistência à Doença/genética , Ecossistema , Meio Ambiente , Variação Genética , Doenças das Plantas/virologia , Medição de Risco/métodos , TransgenesRESUMO
Background: The accurate measurements of the mineral content of cassava roots are vital from a nutritional perspective. The research datasets were from the study assessing the influence of storage root portion, maturity, and environment on the variations of minerals in biofortified cassava roots. Methods: Twenty-five biofortified clones with three varieties as checks were harvested 12 months after planting from five different environments. Also, a different thirty-nine (39) biofortified cassava clones from the unlimited yield trials (UYTs) that included five (5) white-fleshed varieties (as control) were harvested at the age of 9 and 12 months after planting. In addition, two different methods of sample preparations were employed, using a cork borer and without a cork borer. The samples' elemental (minerals) analysis was determined using a standard laboratory method. Results and conclusion: The breeders could use the data in their biofortification cassava programs to know the distribution of minerals in the roots and identify the best promising pipelines. Also, the data could be used by food scientists and nutritionists to understand the parts of the roots with optimum minerals to design their processing protocols and to know those genotypes specific to different environments that could be used for various nutrition intervention programs.
Assuntos
Manihot , Manihot/genética , Raízes de Plantas , Genótipo , AlimentosRESUMO
Diversity in the mineral composition of cassava leaves bred in sub-Saharan Africa has not been fully investigated. This study characterized macro and micro-minerals in 400 genotypes of Cassava leaves planted in three different agroecological environments in Nigeria. Laboratory analysis of the leaves was done using an Inductively Coupled Optical Emission Spectrometer. Across all three locations sampled in this study, the iron content ranged from 43 to 660 mg/kg, zinc from 16 to 440 mg/kg, Manganese 16-61mg/kg, Copper 0.7-14 mg/kg, Aluminum 5.3-630 mg/kg. Among the macro elements, Calcium ranged from 3600 to 17600 mg/kg, Magnesium 1760-6500 mg/kg, Sodium 0.4-720 mg/kg, Potassium 3100-27000 mg/kg. When the location effect was tested, there was a significant difference among the genotypes for all elements. Cluster analysis resulted in five clusters containing 187, 147, 60, 2, and 4 genotypes, respectively. Cluster 2 contained eight varieties (01/0046, 94/0020, 93/0098, 88/112-7(3X), I00/0017, 91/00417, I00/0017, 88/112-7(3X)) that possessed the highest mineral compositions in Fe, Al, Ti, Na, K, S, Mn, and B, respectively. Genotypes 93/0681(4X), 92/0430, and 95/0460 in cluster 3 had the highest concentrations of Mg, Na, and Zn, respectively. The correlation results showed a notable positive relationship among iron with zinc, copper, aluminum, and titanium (r = 0.33, 0.39, 0.48, and 0.56, respectively), zinc with nickel, titanium, and sulphur (r = 0.52, 0.3,2 and 0.51, respectively) while calcium negatively correlated with potassium (r = â 0.31), phosphorus (r = â0.41). This study provides evidence that genotypic diversity exists for mineral composition in cassava leaves and, therefore, can be exploited for genetic improvement by breeders seeking solutions to reduce persistent mineral deficiencies in sub-Saharan Africa.
RESUMO
BACKGROUND: Cassava (Manihot esculenta Crantz), a starchy root crop grown in tropical and subtropical climates, is the sixth most important crop in the world after wheat, rice, maize, potato and barley. The repertoire of simple sequence repeat (SSR) markers for cassava is limited and warrants a need for a larger number of polymorphic SSRs for germplasm characterization and breeding applications. RESULTS: A total of 846 putative microsatellites were identified in silico from an 8,577 cassava unigene set with an average density of one SSR every 7 kb. One hundred and ninety-two candidate SSRs were screened for polymorphism among a panel of cassava cultivars from Africa, Latin America and Asia, four wild Manihot species as well as two other important taxa in the Euphorbiaceae, leafy spurge (Euphorbia esula) and castor bean (Ricinus communis). Of 168 markers with clean amplification products, 124 (73.8%) displayed polymorphism based on high resolution agarose gels. Of 85 EST-SSR markers screened, 80 (94.1%) amplified alleles from one or more wild species (M epruinosa, M glaziovii, M brachyandra, M tripartita) whereas 13 (15.3%) amplified alleles from castor bean and 9 (10.6%) amplified alleles from leafy spurge; hence nearly all markers were transferable to wild relatives of M esculenta while only a fraction was transferable to the more distantly related taxa. In a subset of 20 EST-SSRs assessed by fluorescence-based genotyping the number of alleles per locus ranged from 2 to 10 with an average of 4.55 per locus. These markers had a polymorphism information content (PIC) from 0.19 to 0.75 with an average value of 0.55 and showed genetic relationships consistent with existing information on these genotypes. CONCLUSION: A set of 124 new, unique polymorphic EST-SSRs was developed and characterized which extends the repertoire of SSR markers for cultivated cassava and its wild relatives. The markers show high PIC values and therefore will be useful for cultivar identification, taxonomic studies, and genetic mapping. The study further shows that mining ESTs is a highly efficient strategy for polymorphism detection within the cultivated cassava gene pool.
Assuntos
Etiquetas de Sequências Expressas , Manihot/genética , Repetições de Microssatélites , Polimorfismo Genético , Alelos , DNA de Plantas/genética , Perfilação da Expressão Gênica , Genoma de Planta , Genótipo , Análise de Sequência de DNARESUMO
Twelve cassava landraces were evaluated for sources of resistance genes to diseases and pests of major economic importance in Africa. The objective was to assess their levels of field resistance to mosaic disease (ACMD), bacterial blight (CBB), anthracnose (CAD), and green mite (CGM), compared to TMS30572, an elite cultivar widely adopted in Africa. Considerable genotypic variation was observed among cultivars for resistance to ACMD and CGM but not for CBB and CAD. The lowest mean incidence of 12% and severity of 1.8 on a scale of 1-5 for ACMD was recorded for Atu, a landrace with farmer acceptable qualities. In comparison, the improved cultivar, TMS 30572, had a mean disease incidence of 72% and a severity score of 2.8. Another landrace, MS-20 had the lowest CGM damage score (2.1) while TMS 30572 emerged as one of the susceptible cultivars with a damage score of 3. Additional sources of resistance to ACMD and CGM that may possibly be better than the popular improved cultivar, TMS 30572, were identified in this study. These could serve as novel sources of additional genes to complement existing resources for elite cassava breeding in Africa.
Assuntos
Imunidade Inata/genética , Manihot/genética , Manihot/parasitologia , Ácaros/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Agricultura , Animais , Cruzamento/métodos , Genes de Plantas , Variação Genética , Manihot/imunologia , Óvulo , Doenças das Plantas/parasitologia , Brotos de Planta/crescimento & desenvolvimento , Análise de Componente Principal , Característica Quantitativa HerdávelRESUMO
Cassava is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Primary selection objectives in cassava breeding include dry matter content and micronutrient density, particularly provitamin A carotenoids. These traits are negatively correlated in the African germplasm. This study aimed at identifying genetic markers associated with these traits and uncovering whether linkage and/or pleiotropy were responsible for observed negative correlation. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness were identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that colocated with the 24.1 Mbp peak for carotenoids was identified. Haplotypes at these loci explained 70 and 37% of the phenotypic variability for root yellowness and dry matter content, respectively. Evidence of megabase-scale linkage disequilibrium (LD) around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid () and starch biosynthesis ( and ) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate the genetic architecture of carotenoids and dry matter in cassava and provide an opportunity to accelerate breeding of these traits.
Assuntos
Carotenoides/análise , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Manihot/genética , Locos de Características Quantitativas , Carotenoides/biossíntese , Genes de Plantas , Ligação Genética , Genótipo , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Glucosiltransferases/genética , Haplótipos , Manihot/química , Polimorfismo de Nucleotídeo Único , Amido/biossíntese , UTP-Glucose-1-Fosfato Uridililtransferase/genéticaRESUMO
Cassava mosaic disease (CMD) caused by African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) is the major constraint to cassava production in Nigeria. Sequences of the DNA-A component of ACMV and EACMCV isolates from leguminous plant species (Senna occidentalis, Leucana leucocephala and Glycine max), castor oil plant (Ricinus communis), a weed host (Combretum confertum) and a wild species of cassava (Manihot glaziovii) were determined. All ACMV isolates from these hosts showed 96-98% nucleotide sequence identity with cassava isolates from West Africa. EACMCV was found only in four hosts (S. occidentalis, L. leucocephala, C. confertum, M. glaziovii), and sequences of these isolates showed 96-99% identity with cassava isolates from West Africa. These results provide definitive evidence for the natural occurrence of ACMV and EACMCV in plant species besides cassava.
Assuntos
Begomovirus/isolamento & purificação , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Plantas/virologia , Begomovirus/classificação , Begomovirus/genética , Dados de Sequência Molecular , Nigéria , FilogeniaRESUMO
Cassava, a staple food in sub-Saharan Africa, does not provide adequate amounts of pro-vitamin A (VA) carotenoids and has been targeted for biofortification (i.e. selectively breeding cultivars of increased nutrient density with agroeconomically acceptable characteristics). However, the accessibility of pro-VA carotenoids for absorption in different cultivars of cassava remains unknown. Here, we used the coupled in vitro digestion/Caco-2 cell uptake model to screen the relative accessibility of beta-carotene (betaC) in 10 cultivars of cassava with varying concentrations of betaC. After cooking (boiled for 30 min), the betaC concentration in tubers from different cultivars ranged from less than detectable to 6.9 microg betaC/g cassava. Samples were subjected to simulated oral, gastric, and small intestinal digestion to determine stability and micellarization of betaC. All-trans betaC, 9-cis betaC, and 13-cis betaC were the most abundant carotenoids in cooked cassava and recoveries after digestion exceeded 70%. Efficiency of micellarization of total betaC was 30 +/- 2% for various cultivars with no significant difference in isomers and linearly proportional to concentration in cooked cassava (r = 0.87; P < 0.001). Accumulation of all-trans betaC by Caco-2 cells incubated with the diluted micelle fraction for 4 h was proportional (R(2) = 0.99; P < 0.001) to the quantity present in micelles. These results suggest that all-trans betaC content appears to provide the key selection marker for breeding cassava to improve VA status and that the more complicated screening procedure using in vitro digestion coupled to cell uptake does not provide additional information on potential bioavailability.
Assuntos
Manihot/genética , Manihot/metabolismo , beta Caroteno/metabolismo , Células CACO-2 , Digestão , Genótipo , Humanos , Manihot/química , MicelasRESUMO
Although cassava is a major food crop, its scientific breeding began only recently compared with other crops. Significant progress has been achieved, particularly in Asia where cassava is used mainly for industrial processes and no major biotic constraints affect its productivity. Cassava breeding faces several limitations that need to be addressed. The heterozygous nature of the crop and parental lines used to generate new segregating progenies makes it difficult to identify parents with good breeding values. Breeding so far has been mainly based on a mass phenotypic recurrent selection. There is very little knowledge on the inheritance of traits of agronomic relevance. Several approaches have been taken to overcome the constraints in the current methodologies for the genetic improvement of cassava. Evaluations at early stages of selection allow for estimates of general combining ability effect or breeding values of parental lines. Inbreeding by sequential self-pollination facilitates the identification of useful recessive traits, either already present in the Manihot gene pool or induced by mutagenesis.