Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
EMBO J ; 42(13): e112198, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37278161

RESUMO

There is growing evidence that ion channels are critically involved in cancer cell invasiveness and metastasis. However, the molecular mechanisms of ion signaling promoting cancer behavior are poorly understood and the complexity of the underlying remodeling during metastasis remains to be explored. Here, using a variety of in vitro and in vivo techniques, we show that metastatic prostate cancer cells acquire a specific Na+ /Ca2+ signature required for persistent invasion. We identify the Na+ leak channel, NALCN, which is overexpressed in metastatic prostate cancer, as a major initiator and regulator of Ca2+ oscillations required for invadopodia formation. Indeed, NALCN-mediated Na+ influx into cancer cells maintains intracellular Ca2+ oscillations via a specific chain of ion transport proteins including plasmalemmal and mitochondrial Na+ /Ca2+ exchangers, SERCA and store-operated channels. This signaling cascade promotes activity of the NACLN-colocalized proto-oncogene Src kinase, actin remodeling and secretion of proteolytic enzymes, thus increasing cancer cell invasive potential and metastatic lesions in vivo. Overall, our findings provide new insights into an ion signaling pathway specific for metastatic cells where NALCN acts as persistent invasion controller.


Assuntos
Neoplasias da Próstata , Sódio , Masculino , Humanos , Sódio/metabolismo , Canais Iônicos/metabolismo , Transporte de Íons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38976181

RESUMO

The normal functioning of every cell in the body depends on its bioelectric properties and many diseases are caused by genetic and/or epigenetic dysregulation of the underlying ion channels. Metastasis, the main cause of death from cancer, is a complex multi-stage process in which cells break away from a primary tumour, invade the surrounding tissues, enter the circulation by encountering a blood vessel and spread around the body, ultimately lodging in distant organs and reproliferating to form secondary tumours leading to devastating organ failure. Such cellular behaviours are well known to involve ion channels. The CELEX model offers a novel insight to metastasis where it is the electrical excitation of the cancer cells that is responsible for their aggressive and invasive behaviour. In turn, the hyperexcitability is underpinned by concomitant upregulation of functional voltage-gated sodium channels and downregulation of voltage-gated potassium channels. Here, we update the in vitro and in vivo evidence in favour of the CELEX model for carcinomas. The results are unequivocal for the sodium channel. The potassium channel arm is also broadly supported by existing evidence although these data are complicated by the impact of the channels on the membrane potential and consequent secondary effects. Finally, consistent with the CELEX model, we show (i) that carcinomas are indeed electrically excitable and capable of generating action potentials and (ii) that combination of a sodium channel inhibitor and a potassium channel opener can produce a strong, additive anti-invasive effect. We discuss the possible clinical implications of the CELEX model in managing cancer.

3.
Br J Cancer ; 130(9): 1415-1419, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424164

RESUMO

BACKGROUND: Multi-faceted evidence from a range of cancers suggests strongly that de novo expression of voltage-gated sodium channels (VGSCs) plays a significant role in driving cancer cell invasiveness. Under hypoxic conditions, common to growing tumours, VGSCs develop a persistent current (INaP) which can be blocked selectively by ranolazine. METHODS: Several different carcinomas were examined. We used data from a range of experimental approaches relating to cellular invasiveness and metastasis. These were supplemented by survival data mined from cancer patients. RESULTS: In vitro, ranolazine inhibited invasiveness of cancer cells especially under hypoxia. In vivo, ranolazine suppressed the metastatic abilities of breast and prostate cancers and melanoma. These data were supported by a major retrospective epidemiological study on breast, colon and prostate cancer patients. This showed that risk of dying from cancer was reduced by ca.60% among those taking ranolazine, even if this started 4 years after the diagnosis. Ranolazine was also shown to reduce the adverse effects of chemotherapy on heart and brain. Furthermore, its anti-cancer effectiveness could be boosted by co-administration with other drugs. CONCLUSIONS: Ranolazine, alone or in combination with appropriate therapies, could be reformulated as a safe anti-metastatic drug offering many potential advantages over current systemic treatment modalities.


Assuntos
Ranolazina , Ranolazina/farmacologia , Ranolazina/uso terapêutico , Humanos , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Animais , Feminino , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Invasividade Neoplásica , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
4.
Rev Physiol Biochem Pharmacol ; 183: 251-277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35018530

RESUMO

Ion transporting proteins (ITPs) comprise a wide range of ion channels, exchangers, pumps and ionotropic receptors many of which are expressed in tumours and contribute dynamically to the different components and stages of the complex cancer process, from initiation to metastasis. In this promising major field of biomedical research, several candidate ITPs have emerged as clinically viable. Here, we consider a series of general issues concerning the oncological potential of ITPs focusing on voltage-gated sodium channels as a 'case study'. First, we outline some key properties of 'cancer' as a whole. These include epigenetics, stemness, metastasis, heterogeneity, neuronal characteristics and bioelectricity. Cancer specificity of ITP expression is evaluated in relation to tissue restriction, splice variance, functional specificity and macro-molecular complexing. As regards clinical potential, diagnostics is covered with emphasis on enabling early detection. For therapeutics, we deal with molecular approaches, drug repurposing and combinations. Importantly, we emphasise the need for carefully designed clinical trials. We highlight also the area of 'social responsibility' and the need to involve the public (cancer patients and healthy individuals) in the work of cancer research professionals as well as clinicians. In advising patients how best to manage cancer, and live with it, we offer the following four principles: Awareness and prevention, early detection, specialist, integrated care, and psychological support. Finally, we highlight four key prerequisites for commercialisation of ITP-based technologies against cancer. We conclude that ITPs offer significant potential as regards both understanding the intricacies of the complex process of cancer and for developing much needed novel therapies.


Assuntos
Neoplasias , Canais de Sódio Disparados por Voltagem , Fenômenos Eletrofisiológicos , Humanos , Canais Iônicos , Transporte de Íons , Neoplasias/terapia
5.
J Membr Biol ; 257(1-2): 17-24, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38165418

RESUMO

There is increasing evidence, mostly from breast cancer, that use of local anaesthetics during surgery can inhibit disease recurrence by suppressing the motility of the cancer cells dependent on inherent voltage-gated sodium channels (VGSCs). Here, the possibility that lidocaine could affect cellular behaviours associated with metastasis was tested using the Dunning cell model of rat prostate cancer. Mostly, the strongly metastatic (VGSC-expressing) Mat-LyLu cells were used under both normoxic and hypoxic conditions. The weakly metastatic AT-2 cells served for comparison in some experiments. Lidocaine (1-500 µM) had no effect on cell viability or growth but suppressed Matrigel invasion dose dependently in both normoxia and hypoxia. Used as a control, tetrodotoxin produced similar effects. Exposure to hypoxia increased Nav1.7 mRNA expression but VGSCα protein level in plasma membrane was reduced. Lidocaine under both normoxia and hypoxia had no effect on Nav1.7 mRNA expression. VGSCα protein expression was suppressed by lidocaine under normoxia but no effect was seen in hypoxia. It is concluded that lidocaine can suppress prostate cancer invasiveness without effecting cellular growth or viability. Extended to the clinic, the results would suggest that use of lidocaine, and possibly other local anaesthetics, during surgery can suppress any tendency for post-operative progression of prostate cancer.


Assuntos
Neoplasias da Próstata , Canais de Sódio Disparados por Voltagem , Humanos , Masculino , Animais , Ratos , Lidocaína/farmacologia , Anestésicos Locais/farmacologia , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Canais de Sódio Disparados por Voltagem/genética , Membrana Celular/metabolismo , RNA Mensageiro/metabolismo , Hipóxia
6.
Nutr Cancer ; 74(4): 1139-1162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34085871

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. The standard first-line treatment for PDAC is gemcitabine chemotherapy which, unfortunately, offers only limited chance of a lasting cure. This review further evaluates the hypothesis that the effectiveness of gemcitabine can be improved by combining it with evidence-based complementary measures. Previously, supported by clinical trial data, we suggested that a number of dietary factors and nutraceuticals can be integrated with gemcitabine therapy. Here, we evaluate a further 10 agents for which no clinical trials have (yet) been carried out but there are promising data from in vivo and/or in vitro studies including experiments involving combined treatments with gemcitabine. Two groups of complementary agents are considered: Dietary factors (resveratrol, epigallocatechin gallate, vitamin B9, capsaicin, quercetin and sulforaphane) and nutraceutical agents (artemisinin, garcinol, thymoquinone and emodin). In addition, we identified seven promising agents for which there is currently only basic (mostly in vitro) data. Finally, as a special case of combination therapy, we highlighted synergistic drug combinations involving gemcitabine with "repurposed" aspirin or metformin. We conclude overall that integrated management of PDAC currently is likely to produce the best outcome for patients and for this a wide range of complementary measures is available.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
7.
Semin Cancer Biol ; 58: 65-79, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30633978

RESUMO

Colorectal cancer is a multifaceted disease which is therapeutically challenging. Based on insights gleaned from almost a quarter century of research, it is obvious that deregulation of spatio-temporally controlled signaling pathways play instrumental role in development and progression of colorectal cancer. High-throughput technologies have helped to develop a sharper and broader understanding of the wide ranging signal transduction cascades which also contribute to development of drug resistance, loss of apoptosis and, ultimately, of metastasis. In this review, we have set the spotlight on role of JAK/STAT, TGF/SMAD, Notch, WNT/ß-Catenin, SHH/GLI and p53 pathways in the development and progression of colorectal cancer. We have also highlighted recent reports on TRAIL-mediated pathways and molecularly distinct voltage-gated sodium channels in colorectal cancer.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Oncogenes/genética , Transdução de Sinais/genética , Animais , Apoptose/genética , Humanos
8.
J Cell Physiol ; 234(12): 23066-23081, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31222761

RESUMO

The MDA-MB-231 cell line was used as a model of triple negative breast cancer to investigate the interaction of ß-adrenergic receptor (ß-AR) and voltage-gated sodium channel (VGSC). There was significant (86%) overlap in their expression. Short-term (acute) application of the ß-AR antagonist propranolol (25 µM) led to reduction of peak current and quickening of current inactivation (the latter occurred only in 5% fetal bovine serum). Long-term (48 hr) incubation with propranolol (25 µM) resulted in several changes in VGSC characteristics: shifts in (a) current-voltage relationship and (b) steady-state inactivation, both to more negative potentials and (c) the slowing of recovery from inactivation. We then investigated the effects of propranolol and ranolazine, a blocker of VGSC activity, alone and in combination, on lateral motility and Matrigel invasion. These assays were carried out under hypoxic conditions more representative of tumor progression. Propranolol (2.5 and 25 µM) and ranolazine (5 µM), and their combination inhibited lateral motility. Also, propranolol (25 µM) and ranolazine (5 µM), and their combination inhibited invasion. However, no synergy was observed in the pharmacological combinations for both assays. Propranolol also significantly decreased total neonatal Nav1.5 protein expression, the predominant VGSC subtype expressed in these cells. We conclude (a) that ß-AR and VGSC are functionally coupled in MDA-MB-231 cells; (b) that propranolol has direct blocking action on the VGSC; (c) that the action of propranolol is modulated by serum; and (d) that the antimetastatic cellular effects of propranolol and ranolazine are not additive.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/genética , Propranolol/farmacologia , Ranolazina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Laminina/farmacologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteoglicanas/farmacologia , Receptores Adrenérgicos beta/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Hipóxia Tumoral
9.
J Cell Physiol ; 234(5): 6582-6593, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30341901

RESUMO

Functional expression of voltage-gated Na+ channels (VGSCs) occurs in human carcinomas and promotes invasiveness in vitro and metastasis in vivo. Both neonatal and adult forms of Nav1.5 (nNav1.5 and aNav1.5, respectively) have been reported to be expressed at messenger RNA (mRNA) level in colorectal cancer (CRCa) cells. Here, three CRCa cell lines (HT29, HCT116 and SW620) were studied and found to express nNav1.5 mRNA and protein. In SW620 cells, adopted as a model, effects of gene silencing (by several small interfering RNAs [siRNAs]) selectively targeting nNav1.5 or aNav1.5 were determined on (a) channel activity and (b) invasiveness in vitro. Silencing nNav1.5 made the currents more "adult-like" and suppressed invasion by up to 73%. Importantly, subsequent application of the highly specific, general VGSC blocker, tetrodotoxin (TTX), had no further effect. Conversely, silencing aNav1.5 made the currents more "neonatal-like" but suppressed invasion by only 17% and TTX still induced a significant effect. Hypoxia increased invasiveness and this was also blocked completely by siRNA targeting nNav1.5. The effect of hypoxia was suppressed dose dependently by ranolazine, but its effect was lost in cells pretreated with nNav1.5-siRNA. We conclude that (a) functional nNav1.5 expression is common to human CRCa cells, (b) hypoxia increases the invasiveness of SW620 cells, (c) the VGSC-dependent invasiveness is driven predominantly by nNav1.5 under both normoxic and hypoxic conditions and (d) the hypoxia-induced increase in invasiveness is likely to be mediated by the persistent current component of nNav1.5.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Invasividade Neoplásica/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hipóxia/tratamento farmacológico , RNA Interferente Pequeno/genética , Tetrodotoxina/farmacologia
10.
J Cell Physiol ; 233(5): 3755-3768, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28776687

RESUMO

Mesenchymal stem cells (MSCs) are widely used in modern medicine for which understanding the mechanisms controlling their differentiation is fundamental. Ion channels offer novel insights to this process because of their role in modulating membrane potential and intracellular milieu. Here, we evaluate the contribution of calcium-activated potassium (KCa ) channels to the three main components of MSC differentiation: initiation, proliferation, and migration. First, we demonstrate the importance of the membrane potential (Vm ) and the apparent association of hyperpolarization with differentiation. Of KCa subtypes, most evidence points to activity of big-conductance channels in inducing initiation. On the other hand, intermediate-conductance currents have been shown to promote progression through the cell cycle. While there is no information on the role of KCa channels in migration of MSCs, work from other stem cells and cancer cells suggest that intermediate-conductance and to a lesser extent big-conductance channels drive migration. In all cases, these effects depend on species, tissue origin and lineage. Finally, we present a conceptual model that demonstrates how KCa activity could influence differentiation by regulating Vm and intracellular Ca2+ oscillations. We conclude that KCa channels have significant involvement in MSC differentiation and could potentially enable novel tissue engineering approaches and therapies.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Canais de Potássio Cálcio-Ativados/metabolismo , Animais , Cálcio/metabolismo , Humanos , Potenciais da Membrana/fisiologia
12.
Rev Environ Contam Toxicol ; 243: 27-51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28005215

RESUMO

This review deals with exposure pathways of arsenic (As), as well as its transfer and uptake processes from its source to the human body. It is proven fact that uptake of inorganic As for a long period can lead to chronic As poisoning and a variety of adverse health effects such as skin, lung and bladder cancer, in addition to cardiovascular diseases, diabetes and gastrointestinal symptoms. As exposure occurs primarily from consumption of potable water containing high amounts of inorganic As and also from consumption of crops cultivated in As contaminated agricultural fields-either naturally or anthropogenically through contaminated air or pesticides-or irrigated with As containing water. In this review, light is shed on the transfer mechanism of As through the food chain and the parameters that enhance mobility of As in the environment. Amounts of As accumulation in plants and the transfer mechanisms are also quite different. These differences in As accumulation, such as in leaves, stems, fruits and roots, are discussed in detail. Moreover, presence of As in some vegetables consumed is given by investigating recent research articles that deal with As concentrations, especially in edible parts. Some comparative data are also presented, concerning the level of concentration of As in rice during washing, cooking and processing stages.


Assuntos
Arsênio/toxicidade , Exposição Ambiental , Poluentes Ambientais/toxicidade , Cadeia Alimentar , Humanos
13.
Eur Biophys J ; 45(7): 671-683, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27160185

RESUMO

The main aim of this study was to investigate a possible functional connection between sigma-1 receptors and voltage-gated sodium channels (VGSCs) in human breast cancer cells. The hypothesis was that sigma-1 drugs could alter the metastatic properties of breast cancer cells via the VGSC. Evidence was found for expression of sigma-1 receptor and neonatal Nav1.5 (nNav1.5) expression in both MDA-MB-231 and MDA-MB-468 cells. Sigma-1 drugs (SKF10047 and dimethyltryptamine) did not affect cell proliferation or migration but significantly reduced adhesion to the substrate. Silencing sigma-1 receptor expression by siRNA similarly reduced the adhesion. Blocking nNav1.5 activity with a polyclonal antibody (NESOpAb) targeting an extracellular region of nNav1.5 also reduced the adhesion in both cell lines. Importantly, the results of combined treatments with NESOpAb and a sigma-1 drug or sigma-1 siRNA suggested that both treatments targeted the same mechanism. The possibility was tested, therefore, that the sigma-1 receptor and the nNav1.5 channel formed a physical, functional complex. This suggestion was supported by the results of co-immunoprecipitation experiments. Furthermore, application of sigma-1 drugs to the cells reduced the surface expression of nNav1.5 protein, which could explain how sigma-1 receptor activation could alter the metastatic behaviour of breast cancer cells. Overall, these results are consistent with the idea of a sigma-1 protein behaving like either a "chaperone" or a regulatory subunit associated with nNav1.5.


Assuntos
Neoplasias da Mama/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Receptores sigma/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Inativação Gênica , Humanos , Recém-Nascido , Metástase Neoplásica , Receptores sigma/deficiência , Receptores sigma/genética , Receptor Sigma-1
14.
Eur Biophys J ; 45(7): 735-748, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27665102

RESUMO

The possible association of intracellular Ca2+ with metastasis in human cancer cells is poorly understood. We have studied Ca2+ signaling in human prostate and breast cancer cell lines of strongly versus weakly metastatic potential in a comparative approach. Intracellular free Ca2+ was measured using a membrane-permeant fluorescent Ca2+-indicator dye (Fluo-4 AM) and confocal microscopy. Spontaneous Ca2+ oscillations were observed in a proportion of strongly metastatic human prostate and breast cancer cells (PC-3M and MDA-MB-231, respectively). In contrast, no such oscillations were observed in weakly/non metastatic LNCaP and MCF-7 cells, although a rise in the resting Ca2+ level could be induced by applying a high-K+ solution. Various parameters of the oscillations depended on extracellular Ca2+ and voltage-gated Na+ channel activity. Treatment with either tetrodotoxin (a general blocker of voltage-gated Na+ channels) or ranolazine (a blocker of the persistent component of the channel current) suppressed the Ca2+ oscillations. It is concluded that the functional voltage-gated Na+ channel expression in strongly metastatic cancer cells makes a significant contribution to generation of oscillatory intracellular Ca2+ activity. Possible mechanisms and consequences of the Ca2+ oscillations are discussed.


Assuntos
Neoplasias da Mama/patologia , Sinalização do Cálcio , Espaço Intracelular/metabolismo , Neoplasias da Próstata/patologia , Canais de Sódio Disparados por Voltagem/metabolismo , Espaço Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Masculino , Metástase Neoplásica
15.
Nutr Cancer ; 66(6): 1047-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25102135

RESUMO

Resveratrol, a natural plant phenolic found at high concentration in red grapes, has been suggested to have a range of health benefits. Here, we tested its effects on metastatic cell behaviors. The strongly metastatic rat prostate MAT-LyLu cells were used as a model. At 20 µM, resveratrol had no effect on cellular proliferation or viability. However, it suppressed significantly 1) lateral motility by up to 25%; 2) transverse motility by 31%; and invasion by 37%. It also increased the cells' adhesion to substrate by 55%. Electrophysiologically, resveratrol inhibited voltage-gated Na(+) channel (VGSC) activity that has been shown previously to promote metastatic cell behaviors. This effect was dose-dependent with an IC50 of ∼50 µM. Voltage dependencies of current activation and peak were not affected but steady-state inactivation was shifted to more hyperpolarized potentials and recovery from inactivation was slowed. Coapplication of resveratrol with the highly specific VGSC blocker tetrodotoxin did not result in any additive effect on inhibition of both 1) VGSC activity and 2) metastatic cell behaviors. These results suggest 1) that a significant mode of action of resveratrol is VGSC blockage and 2) that resveratrol has promise as a natural antimetastatic agent.


Assuntos
Metástase Neoplásica , Neoplasias da Próstata/patologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Estilbenos/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Masculino , Ratos , Resveratrol , Tetrodotoxina/farmacologia
16.
Chem Biol Interact ; 385: 110730, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806380

RESUMO

Tetracaine, a long-acting amino ester-type local anesthetic, prevents the initiation and propagation of action potentials by reversibly blocking voltage-gated sodium channels (VGSCs). These channels, which are highly expressed in several carcinomas (e.g. breast, prostate, colon and lung cancers) have been implicated in promoting metastatic behaviours. Recent evidence suggests that local anesthetics can suppress cancer progression. In this paper, we aimed to explore whether tetracaine would reduce the invasive characteristics of breast cancer cells. In a comparative approach, we used two cell lines of contracting metastatic potential: MDA-MB-231 (strongly metastatic) and MCF-7 (weakly metastatic). Tetracaine (50 µM and 75 µM) did not affect the proliferation of both MDA-MB-231 and MCF-7 cells. Importantly, tetracaine suppressed the migratory, invasive, and adhesive capacities of MDA-MB-231 cells; there was no effect on the motility of MCF-7 cells. Tetracaine treatment also significantly decreased the expression and activity levels of MMP-2 and MMP-9, whilst increasing TIMP-2 expression in MDA-MB-231 cells. On the other hand, VGSC α/Nav1.5 and VGSC-ß1 mRNA and protein expression levels were not affected. We conclude that tetracaine has anti-invasive effects on breast cancer cells and may be exploited clinically, for example, in surgery and/or in combination therapies.


Assuntos
Neoplasias da Mama , Canais de Sódio Disparados por Voltagem , Masculino , Humanos , Neoplasias da Mama/metabolismo , Tetracaína , Linhagem Celular Tumoral , Metaloproteinases da Matriz/metabolismo , Invasividade Neoplásica , Movimento Celular
17.
J Biol Chem ; 286(44): 37919-37931, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21873429

RESUMO

VEGF is a key angiogenic cytokine and a major target in anti-angiogenic therapeutic strategies. In endothelial cells (ECs), VEGF binds VEGF receptors and activates ERK1/2 through the phospholipase γ (PLCγ)-PKCα-B-Raf pathway. Our previous work suggested that influx of extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation, and we hypothesized that this could occur through reverse mode (Ca(2+) in and Na(+) out) Na(+)-Ca(2+) exchange (NCX). However, the role of NCX activity in VEGF signaling and angiogenic functions of ECs had not previously been described. Here, using human umbilical vein ECs (HUVECs), we report that extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation and that release of Ca(2+) from intracellular stores alone, in the absence of extracellular Ca(2+), is not sufficient to activate ERK1/2. Furthermore, inhibitors of reverse mode NCX suppressed the VEGF-induced activation of ERK1/2 in a time- and dose-dependent manner and attenuated VEGF-induced Ca(2+) transients. Knockdown of NCX1 (the main NCX isoform in HUVECs) by siRNA confirmed the pharmacological data. A panel of NCX inhibitors also significantly reduced VEGF-induced B-Raf activity and inhibited PKCα translocation to the plasma membrane and total PKC activity in situ. Finally, NCX inhibitors reduced VEGF-induced HUVEC proliferation, migration, and tubular differentiation in surrogate angiogenesis functional assays in vitro. We propose that Ca(2+) influx through reverse mode NCX is required for the activation and the targeting of PKCα to the plasma membrane, an essential step for VEGF-induced ERK1/2 phosphorylation and downstream EC functions in angiogenesis.


Assuntos
Cálcio/metabolismo , Células Endoteliais/citologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neovascularização Patológica , Trocador de Sódio e Cálcio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proliferação de Células , Células Cultivadas , Inativação Gênica , Humanos , Íons , Fosforilação , Proteína Quinase C-alfa/metabolismo , Veias Umbilicais/citologia
18.
J Biol Chem ; 286(19): 16846-60, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21385874

RESUMO

Voltage-gated sodium channel (VGSC) activity has previously been reported in endothelial cells (ECs). However, the exact isoforms of VGSCs present, their mode(s) of action, and potential role(s) in angiogenesis have not been investigated. The main aims of this study were to determine the role of VGSC activity in angiogenic functions and to elucidate the potentially associated signaling mechanisms using human umbilical vein endothelial cells (HUVECs) as a model system. Real-time PCR showed that the primary functional VGSC α- and ß-subunit isoforms in HUVECs were Nav1.5, Nav1.7, VGSCß1, and VGSCß3. Western blots verified that VGSCα proteins were expressed in HUVECs, and immunohistochemistry revealed VGSCα expression in mouse aortic ECs in vivo. Electrophysiological recordings showed that the channels were functional and suppressed by tetrodotoxin (TTX). VGSC activity modulated the following angiogenic properties of HUVECs: VEGF-induced proliferation or chemotaxis, tubular differentiation, and substrate adhesion. Interestingly, different aspects of angiogenesis were controlled by the different VGSC isoforms based on TTX sensitivity and effects of siRNA-mediated gene silencing. Additionally, we show for the first time that TTX-resistant (TTX-R) VGSCs (Nav1.5) potentiate VEGF-induced ERK1/2 activation through the PKCα-B-RAF signaling axis. We postulate that this potentiation occurs through modulation of VEGF-induced HUVEC depolarization and [Ca(2+)](i). We conclude that VGSCs regulate multiple angiogenic functions and VEGF signaling in HUVECs. Our results imply that targeting VGSC expression/activity could be a novel strategy for controlling angiogenesis.


Assuntos
Células Endoteliais/citologia , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Aorta/citologia , Cálcio/química , Diferenciação Celular , Eletrofisiologia/métodos , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Isoformas de Proteínas , RNA Interferente Pequeno/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
19.
EMBO Rep ; 11(6): 431-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20448665

RESUMO

The prostate is a highly specialized mammalian organ that produces and releases large amounts of citrate. However, the citrate release mechanism is not known. Here, we present the results of molecular cloning of a citrate transporter from human normal prostate epithelial PNT2-C2 cells shown previously to express such a mechanism. By using rapid amplification of cDNA ends PCR, we determined that the prostatic carrier is an isoform of the mitochondrial transporter SLC25A1 with a different first exon. We confirmed the functionality of the clone by expressing it in human embryonic kidney cells and performing radiotracer experiments and whole-cell patch-clamp recordings. By using short interfering RNAs targeting different parts of the sequence, we confirmed that the cloned protein is the main prostatic transporter responsible for citrate release. We also produced a specific antibody and localized the cloned transporter protein to the plasma membrane of the cells. By using the same antibody, we have shown that the cloned transporter is expressed in non-malignant human tissues.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Evolução Molecular , Próstata/citologia , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Linhagem Celular , Ácido Cítrico/metabolismo , Células Epiteliais/citologia , Inativação Gênica , Humanos , Imuno-Histoquímica , Íons/metabolismo , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
20.
Cancers (Basel) ; 14(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681682

RESUMO

Cancer is a global health problem that 1 in 2-3 people can expect to experience during their lifetime. Several different modalities exist for cancer management, but all of these suffer from significant shortcomings in both diagnosis and therapy. Apart from developing completely new therapies, a viable way forward is to improve the efficacy of the existing modalities. One way is to combine these with each other or with other complementary approaches. An emerging latter approach is derived from ionic mechanisms, mainly ion channels and exchangers. We evaluate the evidence for this systematically for the main treatment methods: surgery, chemotherapy, radiotherapy and targeted therapies (including monoclonal antibodies, steroid hormones, tyrosine kinase inhibitors and immunotherapy). In surgery, the possible systemic use of local anesthetics to suppress subsequent relapse is still being discussed. For all the other methods, there is significant positive evidence for several cancers and a range of modulators of ionic mechanisms. This applies also to some of the undesirable side effects of the treatments. In chemotherapy, for example, there is evidence for co-treatment with modulators of the potassium channel (Kv11.1), pH regulation (sodium-hydrogen exchanger) and Na+-K+-ATPase (digoxin). Voltage-gated sodium channels, shown previously to promote metastasis, appear to be particularly useful for co-targeting with inhibitors of tyrosine kinases, especially epidermal growth factor. It is concluded that combining current orthodox treatment modalities with modulators of ionic mechanisms can produce beneficial effects including (i) making the treatment more effective, e.g., by lowering doses; (ii) avoiding the onset of resistance to therapy; (iii) reducing undesirable side effects. However, in many cases, prospective clinical trials are needed to put the findings firmly into clinical context.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa