Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Langmuir ; 39(21): 7456-7468, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37192409

RESUMO

Monte Carlo simulations have been carried out to study argon adsorption on graphite at temperatures below the bulk triple point temperature, Ttr(bulk) = 83.8 K. Two models for graphite have been used to investigate the effects of an adsorbate patch with a free boundary on the layering temperatures, the two-dimensional (2D)-triple point and the 2D-critical point for the three adsorbate layers on the surface. The first model (S-model) has a planar surface of infinite extent in the two directions parallel to the surface, and the second is a finite (2D-patch model). Although simulations using both models describe the characteristic temperatures, only the 2D-patch model can represent the experimental isotherms accurately, and the condensation pressures at which first-order transitions occur, while simulations with the S-model yield many unphysical substeps that are not observed experimentally in the first layer adsorbate, which leads to a poor description of higher adsorbate layers. These results support the interpretation that boundary growth of an adsorbate patch is the mechanism for argon adsorption at temperatures below the bulk triple point temperature. Combining the results derived from this simulation study for temperatures below the bulk triple point temperature, with results reported in the literature for temperatures above Ttr(bulk) and experimental data, we have constructed a generic pattern for the adsorption isotherms of simple gases on graphite at temperatures ranging from well below the bulk triple point temperature up to the bulk critical temperature, a comprehensive description not widely recognized in the literature.

2.
Phys Chem Chem Phys ; 23(34): 18369-18377, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612378

RESUMO

Functional groups (FGs) in porous carbon play a pivotal role in water adsorption by nucleating water clusters followed by their coalescence, the process in which precursors are used for filling the confined space typically in the reduced pressure range of 0.3-0.8. While the general role of FGs is known, different types of FGs and their configurations are expected to critically affect the formation of clusters and they are yet to be clarified. To this end, we conducted a comprehensive Monte Carlo simulation of water adsorption at 298 K in a functionalized graphitic slit pore as a function of types of FGs (acidic and basic) and their configurations. The adsorption mechanism is derived from the analysis of adsorption/desorption isotherms, isosteric heat, and 2D density and compressibility distributions. Our results show that (1) with the increasing density of FGs, the isotherm switches from Type V to Type I and the precursor used for pore filling shifts from clustering to molecular layering, (2) the intra-rotation of atoms around the Sigma bonds in the FGs plays an important role in clustering when the FGs are in proximity and (3) for a given density of FGs, the configurations (interspacing distribution) of FGs dictate the shape and size of the water clusters, affecting the filling and emptying of water molecules from the confined space, which have practical implications in moisture control by solid adsorbents.

3.
Phys Chem Chem Phys ; 23(22): 12569-12581, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34037040

RESUMO

Experimental isotherms for argon and nitrogen adsorption on two non-graphitized carbon substrates, Carbopack B and Cabot BP280, do not obey Henry's Law in the range of pressures accessible to the most sensitive MKS pressure transducers. At high pressures, close to the bulk coexistence pressure (P0), the isotherms at temperatures below the bulk triple point temperature cross the P0 axis at a finite loading, a behaviour which is interpreted as incomplete wetting. It was found that the adsorbed density at P0 for Cabot BP280 is lower than that for Carbopack B which is, in turn, only slightly lower than that for the highly graphitized Carbopack F, suggesting that there is a long-range effect of the surface structure in non-graphitized carbon blacks, in the accumulation of higher layers, especially for Cabot BP280. We have carried out extensive Monte Carlo simulations to compare experimental observations with a molecular model for substrate surfaces decorated with crevices of molecular dimensions. From the analysis of the experimental data, it was found that the typical width of crevices is of the order of 0.65-0.9 nm. In the high pressure region, the crossing of the P0 axis by isotherms at temperatures below the bulk triple point temperature can be explained by an adsorbate structure which is less dense and more disordered than the fcc structure of the bulk crystal, with a consequent raising of the coexistence pressure between the adsorbate and the gas phase above P0. Adsorbate loading at the point where the isotherm crosses the P0 axis for Cabot BP280 is lower than for Carbopack B which can be attributed to a higher concentration of crevices leading to a lower adsorbate density and an irregular arrangement of atoms at the interface separating the adsorbed phase and the gas phase. This results in weaker gas-adsorbate interactions which supresses the build-up of higher layers. We suggest that the use of the adsorbed density at the bulk coexistence pressure, at temperatures below the bulk triple point temperature, can be a useful tool for assessing the presence and concentration of surface crevices on non-graphitized carbon black.

4.
Phys Chem Chem Phys ; 22(37): 21463-21473, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32945318

RESUMO

Sulfur dioxide (SO2) in flue gases emitted from fossil fuel power plants dramatically reduces the CO2 capture efficiency via adsorption, which is due to the potential reaction of SO2 with basic functional groups on the adsorbent. Physisorption rather than chemisorption is preferred, because adsorbents can be more easily regenerated by either reducing the pressure or increasing the temperature. Carbon is a suitable adsorbent for SO2 capture and widely used, and therefore it is important to study SO2 adsorption onto carbon with the Monte Carlo simulation to provide microscopic details to demarcate the roles of the basal plane of the graphene layer and the functional groups in adsorption. SO2 is a polar molecule like water, as they both carry partial charges, but they interact differently with functional groups. Instead of 3D-clusters in the case of water, SO2 is localized around the functional groups and spreads over the basal plane to form 2D-molecular layers because of the strong dispersive interactions with graphite. The results indicate that the functional group has a negligible effect on the enhancement of adsorption and its role is to localize 2D-clusters of SO2 molecules. For non-graphitized carbon, we have found that the greater loadings at low pressure compared to the highly graphitized carbon is due to the presence of defects (crevices) on the basal plane surface. Finally, to describe better the experimental data, we have found that the reduction in the interactions between adsorbed molecules in the first layer is because of the repulsion of their dipoles pointing normal to the surface, a phenomenon called surface mediation and is widely used in the description of gas adsorption on surfaces.

5.
Phys Chem Chem Phys ; 22(30): 17134-17144, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32691031

RESUMO

We have used molecular simulation with two intermolecular potential models, TraPPE-UA and TraPPE-EH, the latter of which accounts for the tetrahedral shape, to study the effects of shape on methane adsorption on graphite. Both models give good descriptions of the vapour-liquid equilibria in the bulk phase, but adsorption on graphite is better described by the TraPPE-EH model. Molecular configurations in the monolayer, show the variation with temperature of the registry sites for the carbon and hydrogen atoms of the methane molecules. At temperatures below 70 K, the centre of mass (COM) of the molecules is in registry with the centre of the carbon hexagons. For temperatures above 70 K, a commensurate monolayer is initially formed as at low temperatures, then as the loading is increased the first layer remains in registry, but the COM of the methane molecules in the first layer shifts to the top of the graphite carbon atoms with the C-H bond pointing to carbon atoms in the second shell of a C-hexagon. At temperatures above 93 K, the first adsorbate layer goes through these two commensurate states and then undergoes a transition to an incommensurate solid. Finally, for temperatures greater than 110 K methane behaves like a pseudo spherical molecule.

6.
Langmuir ; 35(3): 641-652, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30575395

RESUMO

Simulations of ammonia adsorption on graphite were carried out over a range of temperatures to investigate the transition from nonwetting to wetting. The process is governed by a subtle interplay between the various interactions in the system and the temperature. At temperatures below the bulk triple point, the system is nonwetting; above the triple point, we observed continuous wetting, preceded by a prewetting region in which the so-called thin-to-thick film transition occurs. This system serves as an excellent example of wetting/nonwetting behavior in an associating fluid as a function of temperature because the heat of sublimation (or condensation) is greater than the isosteric heat of adsorption at zero loading. The nonwetting-to-wetting transition (NW/W) is also strongly affected by the adsorbate-adsorbate interaction, which becomes important when this contribution to the isosteric heat is of a similar magnitude to the heat of condensation. An appropriate indicator of a NW/W transition at a given loading is therefore the difference between the isosteric heat and the heat of sublimation (or condensation). Our simulation results show the "thin-to-thick" film transition in the temperature range between 195 and 240 K, which has not been previously explained. Above 240 K, continuous wetting occurs. This study provides a basis for a better understanding of adsorption in a range of systems because ammonia is an intermediate between simple molecules, such as argon, and strongly associating fluids, such as water.

7.
Phys Chem Chem Phys ; 21(47): 26219-26231, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31763649

RESUMO

The transition from partial wetting to complete wetting for methanol adsorbed on a highly graphitized thermal carbon black, Carbopack F, over a range of temperature from the triple point at 185 K to 298 K, was investigated using Monte Carlo simulation and high-resolution experiments. At 190 K, (above the triple point) both the experimental and simulated adsorption isotherms cut the P/P0 axis at a finite loading; a feature of partial wetting that has not been recognized previously in the literature. This occurs because most O- and H-atoms in the second layer of the adsorbate point towards the adsorbent surface to form hydrogen bonds with molecules in the first layer and therefore the interface between the bilayer adsorbed film and the gas phase consists mainly of methyl groups, preventing the system from forming higher layers. At temperatures above 263 K, methanol adsorption increases with pressure and wets the surface as the pressure approaches the bulk coexistence pressure P0. This is because the O-H and O-CH3 bonds of methanol in the region above the second layer have random orientation, and adsorption in higher layers takes place via hydrogen bonding. From extensive simulations of methanol adsorption on adsorbents of different strength over a wide temperature range, a parametric map has been constructed which identifies the regions of non-wetting, partial wetting and complete wetting. For a given surface strength, wetting is favoured at higher temperatures, and at a given temperature there is a transition from non-wetting on weakly adsorbing substrates to either partial wetting or to complete wetting on strong adsorbents at temperatures below or above the roughening temperature Tr of 260 K.

8.
Phys Chem Chem Phys ; 19(39): 27105-27115, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967005

RESUMO

Understanding methane adsorption is fundamental to understanding gas storage and gas separation technologies. Detailed analyses of methane adsorption on non-porous substrates are pivotal for understanding the intrinsic interactions between the methane molecule and the adsorbent. In this paper, we particularly address the isosteric heat, which is a crucial parameter that characterizes the energetics of such systems. We have used grand canonical Monte Carlo simulations to study methane adsorption on graphite over a range of temperatures (from 50 K to 110 K). Our simulation results show good agreement with experimental data for the 2D phase transition, the 2D triple and critical points in the first layer obtained from low energy electron diffraction, neutron scattering and heat capacity measurements. On the basis of this agreement, we present a detailed microscopic picture of isosteric heat and its evolution with temperature. Our results show that the origin of the cusp and spike in the isosteric heat curve and their shift with temperature are associated with the balance of entropic and enthalpic contributions between the first and second layer.

9.
Phys Chem Chem Phys ; 18(2): 1163-71, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26661571

RESUMO

We present a Monte Carlo simulation and experimental study of ammonia adsorption on graphitized thermal carbon black. Our new molecular model for the adsorbent is composed of basal plane graphene surfaces with ultrafine pores grafted with hydroxyl groups at the junctions between graphene layers. The simulated adsorption isotherms and isosteric heats are in good agreement with the experimental data of Holmes and Beebe, and the simulations reproduce the unusual experimental hysteresis of ammonia adsorption on an open graphite surface for the first time in the literature. The detailed mechanisms of adsorption and desorption, and the origin of hysteresis, are investigated by the microscopic analysis of the adsorbate structures to show that restructuring occurs during adsorption. The main results from this work are: (i) at the triple point, ammonia adsorbs preferentially around the functional groups to form clusters in the ultrafine pores and spills-over onto the basal plane as the loading is increased; followed by a 2D condensation on the graphite surface to form a bilayer adsorbate; (ii) at the boiling point, adsorption occurs on the basal plane due to the increasing importance of thermal fluctuations (an entropic effect); (iii) the isosteric heat is very high at zero loading due to the strong interaction between ammonia and the functional groups, decreases steeply when the functional group is saturated, and eventually reaches the heat of condensation as the fluid-fluid interaction increases.

10.
Langmuir ; 31(14): 4196-204, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25797845

RESUMO

Adsorption of different gases on graphitized thermal carbon black (GTCB) has been studied with a new molecular model to examine the consequences of micropore crevices and functional groups at the junctions between adjacent basal planes. Adsorption was simulated in the Grand Canonical Monte Carlo ensemble and the theoretical Henry constants were calculated by Monte Carlo volume integration over the Boltzmann factor of the solid-fluid potential. The simulation results are in good agreement with high-resolution experimental isotherms for argon on mineralogical graphite measured by Lopez-Gonzalez et al.1 From detailed inspection of the argon isotherms at extremely low coverages, we find two distinct Henry law regions, separated by a plateau (suggesting saturation of the stronger sites) that spans over a few decades of pressure. The first Henry law region is attributed to adsorption in the ultrafine crevices at the junctions between two adjacent basal planes, and the second region corresponds to adsorption on the basal plane, as confirmed by the theoretical Henry constant. The simulated isosteric heat and snapshots of molecular configurations show that argon adsorbs preferentially in the ultrafine crevices where there is a deep potential well due to overlap from the opposite pore walls. Similar behavior was found for other nonassociating fluids (Ar, N2, and CO2); however, for associating fluids (NH3 and H2O), the strong sites for adsorption and nucleation come from the combined effects of functional groups and ultrafine crevices, since the latter cannot alone account for the observed adsorption.

11.
Langmuir ; 31(17): 4895-905, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25871845

RESUMO

We have carried out systematic experiments and numerical simulations of the adsorption on porous anodic aluminum oxide (AAO) duplex layers presenting either an ordered or a disordered interconnecting interface between the large (cavity) and small (constriction) sections of the structured pores. Selective blocking of the pore openings resulted in three different pore topologies: open structured pores, funnel pores, and ink-bottle pores. In the case of the structured pores having an ordered interface, the adsorption isotherms present a rich phenomenology characterized by the presence of two steps in the condensation branch and the opening of one (two) hysteresis loops during evaporation for the ink-bottle (open and funnel) pores. The isotherms can be obtained by summing the isotherms measured on uniform pores having the dimensions of the constrictions or of the cavities. The numerical analysis of the three different pore topologies indicates that the shape of the junction between the two pore sections is only important for the adsorption branch. In particular, a conic junction which resembles that of the AAO pores represents the experimental isotherms for the open and funnel pores better, but the shape of the junction in the ink bottle pores does not matter. The isotherms for the duplex layers with a disordered interface display the same general features found for the ordered duplex layers. In both cases, the adsorption branches coincide and have two steps which are shifted to lower relative pressures compared to those for the ordered duplex. Furthermore, the desorption branches comprise hysteresis loops much wider than those of the ordered duplex layers. Overall, this study highlights the important role played by morphologies where there are interconnections between large and small pores.

12.
Langmuir ; 30(43): 12879-87, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25314672

RESUMO

The hysteresis loop and scanning curves for argon adsorbed in a wedge pore with one end closed are studied with grand canonical Monte Carlo simulation. We have found multiple hysteresis loops for pores with either the narrow end or the wider end closed. In pores with the narrow end closed, adsorption and desorption exhibits a two-stage sequence of rapid change, followed by a gradual change in adsorbate density. The pore can be divided into zones of commensurate packing and junctions of incommensurate packing. A striking feature is that the sequence of these two stages is opposite for the adsorption and desorption processes. This can be explained by cohesion in the adsorbate, in which a steep condensation process is associated with the zones and a steep evaporation process is associated with the junctions between them. For pores with the wider end closed, the processes of adsorption and desorption from various zones are correlated with each other. In pores with the narrow end closed, the scanning curves trace reversibly along the segment of the isotherm, where the isotherm shows gradual change, and when the scanning curve reaches a point between the gradual change segment and the sharp change segment, the scanning curve crosses from one boundary of the hysteresis loop to the corresponding point on the other boundary. This indicates that the condensation and evaporation states are not affected by scanning but that, in scanning across the hysteresis loop, the adsorbate passes through a sequence of metastable states as the distribution of density is rearranged, without any significant change in the overall density. In contrast, for pores with the wider end closed, both the descending curve from a partially filled pore and the ascending curve are identical to the desorption branch of the corresponding pore with its narrow end closed.

13.
Phys Chem Chem Phys ; 16(24): 12362-73, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24826906

RESUMO

A new theory of condensation in an open end slit pore, based on the concept of temperature dependent undulation, at the interface separating the adsorbed phase and the gas-like region, is presented. The theory, describes, for the first time, the microscopic origin of the critical hysteresis temperature and the critical hysteresis pore size, properties which are not accessible to any classical theories.

14.
Langmuir ; 29(9): 2927-34, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23398281

RESUMO

We present a simulation study of argon adsorption in a closed-end mesopore of uniform diameter in order to investigate the occurrence of hysteresis and propose two principal reasons for its existence: the variation in the shape and radius of curvature of the meniscus and the change in the packing of adsorbate during adsorption and desorption. This interpretation differs from classical theories that neglect both of these factors, and therefore find that adsorption-desorption in a closed-end pore is reversible. A detailed simulation study of the effects of temperature on the microscopic behavior of the adsorbate supports the interpretation proposed here.

15.
Adv Colloid Interface Sci ; 311: 102831, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36586219

RESUMO

This contribution provides a critical review of gas physisorption in the textural characterization of porous solids, with the focus on the artifacts in experimental data that lead to serious misinterpretation of the results derived from the analysis of adsorption isotherms. Apart from the problems related to the determination and interpretation of the BET area, we paid particular attention to the issues associated with the determination of pore size distribution; for example, the choice of the correct branch of the hysteresis loop and the network effects. Pitfalls in the analyses using either the classical macroscopic or the advanced microscopic (DFT, GCMC) methodology are addressed. The ultimate aim is to provide guidance for proper calculations and correct interpretation of physisorption data.

16.
Cardiovasc Intervent Radiol ; 46(5): 610-616, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36949182

RESUMO

PURPOSE: This all-comers registry aimed to assess safety and early efficacy of venous embolization in patients with venogenic erectile dysfunction due to venous leak in an unselected cohort. METHODS: Between October 2019 and September 2022, patients with venogenic erectile dysfunction resistant to phosphodiesterase-5-inhibitors were treated with venous embolization using ultrasound-guided anterograde access via a deep dorsal penile vein in a single center. A mix of ethiodized oil and modified cyanoacrylate-based glue n-butyl 2 cyanoacrylate (NBCA) monomer plus methacryloxy-sulpholane monomer (Glubran-2, GEM, Italy) was used as liquid embolic agent. Prior to embolization, venous leak had been verified based on penile duplex sonography and computed tomography cavernosography. Procedural success was defined as technically successful and complete target vein embolization. The primary safety outcome measure was any major adverse event 6 weeks after the procedure. The primary feasibility outcome measure was IIEF-15 (International Index of Erectile Function-15) score improvement ≥ 4 points in ≥ 50% of subjects on 6 weeks follow-up post intervention. RESULTS: Fifty consecutive patients (mean age 61.8 ± 10.0 years) with severe erectile dysfunction due to venous leak underwent venous embolization. Procedural success was achieved in 49/50 (98%) of patients with no major adverse events on follow-up. The primary feasibility outcome measure at 6 weeks was reached by 34/50 (68%) of patients. CONCLUSION: Venous leak embolization via deep dorsal penile vein access using a liquid embolic agent was safe for all and efficacious in the majority of patients with severe venogenic erectile dysfunction on 6 weeks follow-up.


Assuntos
Disfunção Erétil , Impotência Vasculogênica , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Disfunção Erétil/diagnóstico por imagem , Disfunção Erétil/terapia , Impotência Vasculogênica/diagnóstico por imagem , Impotência Vasculogênica/terapia , Veias , Pênis/diagnóstico por imagem , Pênis/irrigação sanguínea , Cianoacrilatos
17.
Langmuir ; 28(25): 9543-53, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22650323

RESUMO

We presented a detailed thermodynamic analysis of argon adsorption on a graphitized carbon black with a kinetic Monte Carlo scheme. In this study, we particularly paid attention to the formation of a hexagonal two-dimensional molecular layer on a graphite surface and discuss conditions of its stability and thermodynamic properties of the adsorbed phase as a function of loading. It is found that the simulation results are substantially affected by the dimensions of the simulation box when the monolayer forms a hexagonal ordered structure. This is due to the fact that the lattice constant is constrained by the dimensions of the surface. To circumvent this, we presented a thermodynamic technique, which allows for the variation of the box size as a function of loading, to determine the "intrinsic" lattice constant (rather than apparent average value because of the fixed dimensions of the simulation box) and the thermodynamic functions for the adsorbed phase: the Helmholtz free energy, the chemical potential, and the surface tension. The tangential and normal pressures as a function of the distance from the surface are also discussed.

18.
Phys Chem Chem Phys ; 14(31): 11112-8, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22767023

RESUMO

We present for the first time in the literature a new scheme of kinetic Monte Carlo method applied on a grand canonical ensemble, which we call hereafter GC-kMC. It was shown recently that the kinetic Monte Carlo (kMC) scheme is a very effective tool for the analysis of equilibrium systems. It had been applied in a canonical ensemble to describe vapor-liquid equilibrium of argon over a wide range of temperatures, gas adsorption on a graphite open surface and in graphitic slit pores. However, in spite of the conformity of canonical and grand canonical ensembles, the latter is more relevant in the correct description of open systems; for example, the hysteresis loop observed in adsorption of gases in pores under sub-critical conditions can only be described with a grand canonical ensemble. Therefore, the present paper is aimed at an extension of the kMC to open systems. The developed GC-kMC was proved to be consistent with the results obtained with the canonical kMC (C-kMC) for argon adsorption on a graphite surface at 77 K and in graphitic slit pores at 87.3 K. We showed that in slit micropores the hexagonal packing in the layers adjacent to the pore walls is observed at high loadings even at temperatures above the triple point of the bulk phase. The potential and applicability of the GC-kMC are further shown with the correct description of the heat of adsorption and the pressure tensor of the adsorbed phase.

19.
J Chem Phys ; 136(13): 134702, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22482575

RESUMO

We present results of application of the kinetic Monte Carlo technique to simulate argon adsorption on a graphite surface at temperatures below and above the triple point. We show that below the triple point the densification of the adsorbed layer with loading results in the rearrangement of molecules to form a hexagonal structure, which is accompanied by the release of an additional heat, associated with this disorder-order transition. This appears as a spike in the plot of the heat of adsorption versus loading at the completion of a monolayer on the surface. To describe the details of the adsorbed phase, we analyzed thermodynamic properties and the effects of temperature on the order-disorder transition of the first layer.

20.
Langmuir ; 27(23): 14290-9, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22013949

RESUMO

We present equations to calculate the differential and integral enthalpy changes of adsorption for their use in Monte Carlo simulation. Adsorption of a system of N molecules, subject to an external potential energy, is viewed as one of transferring these molecules from a reference gas phase (state 1) to the adsorption system (state 2) at the same temperature and equilibrium pressure (same chemical potential). The excess amount adsorbed is the difference between N and the hypothetical amount of gas occupying the accessible volume of the system at the same density as the reference gas. The enthalpy change is a state function, which is defined as the difference between the enthalpies of state 2 and state 1, and the isosteric heat is defined as the negative of the derivative of this enthalpy change with respect to the excess amount of adsorption. It is suitable to determine how the system behaves for a differential increment in the excess phase adsorbed under subcritical conditions. For supercritical conditions, use of the integral enthalpy of adsorption per particle is recommended since the isosteric heat becomes infinite at the maximum excess concentration. With these unambiguous definitions we derive equations which are applicable for a general case of adsorption and demonstrate how they can be used in a Monte Carlo simulation. We apply the new equations to argon adsorption at various temperatures on a graphite surface to illustrate the need to use the correct equation to describe isosteric heat of adsorption.


Assuntos
Simulação de Dinâmica Molecular , Termodinâmica , Adsorção , Argônio/química , Grafite/química , Método de Monte Carlo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa