Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(24): 26030-26049, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38911757

RESUMO

Antimicrobial resistance has increased rapidly, causing daunting morbidity and mortality rates worldwide. Antimicrobial peptides (AMPs) have emerged as promising alternatives to traditional antibiotics due to their broad range of targets and low tendency to elicit resistance. However, potent antimicrobial activity is often accompanied by excessive cytotoxicity toward host cells, leading to a halt in AMP therapeutic development. Here, we present multivariate analyses that correlate 28 peptide properties to the activity and toxicity of 46 diverse African-derived AMPs and identify the negative lipophilicity of polar residues as an essential physiochemical property for selective antimicrobial activity. Twenty-seven active AMPs are identified, of which the majority are of scorpion or frog origin. Of these, thirteen are novel with no previously reported activities. Principal component analysis and quantitative structure-activity relationships (QSAR) reveal that overall hydrophobicity, lipophilicity, and residue side chain surface area affect the antimicrobial and cytotoxic activity of an AMP. This has been well documented previously, but the present QSAR analysis additionally reveals that a decrease in the lipophilicity, contributed by those amino acids classified as polar, confers selectivity for a peptide to pathogen over mammalian cells. Furthermore, an increase in overall peptide charge aids selectivity toward Gram-negative bacteria and fungi, while selectivity toward Gram-positive bacteria is obtained through an increased number of small lipophilic residues. Finally, a conservative increase in peptide size in terms of sequence length and molecular weight also contributes to improved activity without affecting toxicity. Our findings suggest a novel approach for the rational design or modification of existing AMPs to increase pathogen selectivity and enhance therapeutic potential.

2.
ACS Infect Dis ; 7(8): 2310-2323, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34329558

RESUMO

Reliable antimicrobial susceptibility testing is essential in informing both clinical antibiotic therapy decisions and the development of new antibiotics. Mammalian cell culture media have been proposed as an alternative to bacteriological media, potentially representing some critical aspects of the infection environment more accurately. Here, we use a combination of NMR metabolomics and electron microscopy to investigate the response of Escherichia coli and Pseudomonas aeruginosa to growth in differing rich media to determine whether and how this determines metabolic strategies, the composition of the cell wall, and consequently susceptibility to membrane active antimicrobials including colistin and tobramycin. The NMR metabolomic approach is first validated by characterizing the expected E. coli acid stress response to fermentation and the accompanying changes in the cell wall composition, when cultured in glucose rich mammalian cell culture media. Glucose is not a major carbon source for P. aeruginosa but is associated with a response to osmotic stress and a modest increase in colistin tolerance. Growth of P. aeruginosa in a range of bacteriological media is supported by consumption of formate, an important electron donor in anaerobic respiration. In mammalian cell culture media, however, the overall metabolic strategy of P. aeruginosa is instead dependent on consumption of glutamine and lactate. Formate doping of mammalian cell culture media does not alter the overall metabolic strategy but is associated with polyamine catabolism, remodelling of both inner and outer membranes, and a modest sensitization of P. aeruginosa PAO1 to colistin. Further, in a panel of P. aeruginosa isolates an increase between 2- and 3-fold in sensitivity to tobramycin is achieved through doping with other organic acids, notably propionate which also similarly enhances the activity of colistin. Organic acids are therefore capable of nonspecifically influencing the potency of membrane active antimicrobials.


Assuntos
Anti-Infecciosos , Pseudomonas aeruginosa , Parede Celular , Escherichia coli , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa