Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 762: 143086, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33160672

RESUMO

Removal of bromate (BrO3-) has gained increasing attention in drinking water treatment process. Photocatalysis technology is an effective strategy for bromate removal. During the photocatalytic reduction of bromate process, the photo-generated electrons are reductive species toward bromate reduction and photo-generated holes responsible for water oxidation. In this study, the monoclinic bismuth vanadate (BiVO4) single crystal was developed as a visible photocatalyst for the effective removal of bromate. The as-synthesized BiVO4 photocatalyst with optimized {010} and {110} facets ratio could achieve almost 100% removal efficiency of BrO3- driven by visible light with a first-order kinetic constant of 0.0368 min-1. As demonstrated by the electron scavenger experiment and density functional theory (DFT) calculations, the exposed facets of BiVO4 should account for the high photocatalytic reduction efficiency. Under visible light illumination, the photo-generated electron and holes were spatially transferred to {010} facets and {110} facets, respectively. The BiVO4 single crystal photocatalyst may serve as an attractive photocatalyst by virtue of its response to the visible light, spatially charge transfer and separation as well as high photocatalytic activity, which will make the removal of BrO3- in water much easier, more economical and more sustainable.

2.
Water Res ; 188: 116472, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33027697

RESUMO

Continuous development of industry and civilization has led to changes in composition, texture and toxicity of waste water due to the wide range of pollutants being present. Considering that the conventional wastewater treatment methods are insufficient for removing micropollutants and nutrients to a high level, other, alternative, treatment methods should be used to polish wastewater treatment plant effluents. In this study we developed an alternative, polishing concept for removal of ammonium and micropollutants that could potentially be incorporated in existing wastewater treatment plants. We demonstrated a method to use high silica MOR zeolite granules as an adsorbent for simultaneous removal of the micropollutant sulfamethoxazole (SMX) and ammonium (NH4+) ions from aqueous solutions. At an initial NH4+ concentration of 10 mg/L the high silica zeolite mordenite (MOR) granules removed 0.42 mg/g of NH4+, similar to the removal obtained by commonly used natural zeolite Zeolita (0.44 mg/g). However, at higher NH4+ concentrations the Zeolita performed better. In addition, the Langmuir isotherm model showed a higher maximum adsorption capacity of Zeolita (qmax, 4.08 mg/g), which was about two times higher than that of MOR (2.11). The adsorption capacity of MOR towards SMX, at both low (2 µg/L) and high (50 mg/L) initial concentrations, was high and even increased in the presence of NH4+ ions. The used adsorbent could be regenerated with ozone and reused in consecutive adsorption-regeneration cycles with marginal decrease in the total adsorption capacity.


Assuntos
Compostos de Amônio , Ozônio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Adsorção , Dióxido de Silício , Sulfametoxazol
3.
J Hazard Mater ; 404(Pt A): 124154, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33065457

RESUMO

A novel sol-gel method was employed in this study to efficiently synthesize SnO2 nanoparticles to catalyze the ozonation of acetaminophen (ACT) from aqueous solutions. The influence of various parameters including Sn source, type of capping and alkaline agents, and calcination temperature on the catalytic activity of the SnO2 preparations was investigated. The SnO2 nanoparticles prepared by tin tetrachloride as Sn source, NaOH as gelatin agent, CTAB as capping agent and at calcination temperature of 550 °C (SnNaC-550) exhibited the maximum performance in the catalysis of ACT. The optimized catalyst (SnNaC-550) had spherical-homogeneous and cubic-shaped nanocrystalline particles with 5.5 nm mean particle size and a BET surface area of 81 m2/g, which resulted in 98% degradation and 84% mineralization of 50 mg/L ACT at 20 and 30 min reaction time, respectively when combined with ozonation (COP). Based on the radical scavenger experiments, •OH was the major oxidizing agent involved in the removal of ACT. LC/MS analysis showed that short-chain carboxylic acids were the main intermediates. Furthermore, the SnNaC-550 catalytic activity was preserved after four successive cycles. Collectively, the new method has the potential to efficiently synthesize stable and reusable SnO2 nanoparticles to catalyze the ozonation of ACT from aquatic environments.


Assuntos
Nanopartículas , Ozônio , Purificação da Água , Acetaminofen , Catálise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa