Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 435(7042): 658-61, 2005 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15931218

RESUMO

Electrical transport through molecules has been much studied since it was proposed that individual molecules might behave like basic electronic devices, and intriguing single-molecule electronic effects have been demonstrated. But because transport properties are sensitive to structural variations on the atomic scale, further progress calls for detailed knowledge of how the functional properties of molecules depend on structural features. The characterization of two-terminal structures has become increasingly robust and reproducible, and for some systems detailed structural characterization of molecules on electrodes or insulators is available. Here we present scanning tunnelling microscopy observations and classical electrostatic and quantum mechanical modelling results that show that the electrostatic field emanating from a fixed point charge regulates the conductivity of nearby substrate-bound molecules. We find that the onset of molecular conduction is shifted by changing the charge state of a silicon surface atom, or by varying the spatial relationship between the molecule and that charged centre. Because the shifting results in conductivity changes of substantial magnitude, these effects are easily observed at room temperature.

2.
J Chem Phys ; 134(11): 114707, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21428656

RESUMO

It has previously been shown that multimolecular organic nanostructures form on H-Si(100)-2×1 via a radical mediated growth process. In this mechanism, growth begins through the addition of a molecule to a silicon surface dangling bond, followed by the abstraction of a neighboring H atom and generation of a new dangling bond on the neighboring site. Nanostructures formed by this mechanism grow along one edge of a dimer row. Here, we explored the possibility of using lithographically prepared, biased metal contacts on the silicon surface to generate an electric field that orients molecules during the growth process to achieve growth in the perpendicular-to-row direction. The formation of some nanostructures in a direction that was nearly perpendicular to the dimer rows was achieved, whereas such features were not formed in the absence of the field. Analysis of the scanning tunneling microscopy images suggests that the formation of these nanostructures may involve self-templating effects in addition to dangling bond diffusion rather than a straightforward addition∕abstraction mechanism. These initial results offer some indication that a molecular pattern writer can be achieved.

3.
J Phys Chem A ; 111(49): 12257-9, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17867660

RESUMO

Future nanoscale integrated circuits will require the realization of interconnections using molecular-scale nanostructures; a practical fabrication scheme would need to be largely self-assembling and operate on a large number of like structures in parallel. The self-directed growth of organic molecules on hydrogen-terminated silicon(100) [H-Si(100)] offers a simple method of realizing one-dimensional molecular lines. In this work, we introduce the ability to change the growth direction and form more complex, contiguous shapes. Numerous styrene and trimethylene sulfide L shapes were grown on a H-Si(100)-3x1 surface in parallel with no intermediate surface lithography steps, and similar shapes were also grown using allyl mercaptan and benzaldehyde on H-Si(100)-2x1. Registered scanning tunneling microscopy (STM) images and high-resolution electron energy loss spectroscopy (HREELS) were used to investigate the growth process.

4.
Phys Chem Chem Phys ; 9(13): 1629-34, 2007 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-17429556

RESUMO

Incorporating diversity into structures constructed from the organic modification of silicon surfaces requires the use of molecules that contain multiple substituents of different types. In this work we examine the possible dissociation pathways of diethylhydroxylamine (DEHA, (C(2)H(5))(2)NOH) on the surface of clean silicon(100)-2x1 using cluster and planewave computational methods and high resolution electron energy loss spectroscopy. Our computational results show that DEHA initially forms a strongly-bound complex with the surface via a dative N-Si bond. A low-barrier O-H bond scission then occurs yielding a surface silicon dimer capped by the (C(2)H(5))(2)NO and H fragments. Calculated and measured vibrational spectra support the computed reaction mechanism.


Assuntos
Simulação por Computador , Hidroxilaminas/química , Modelos Químicos , Silício/química , Espectroscopia de Perda de Energia de Elétrons/métodos , Vibração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa