Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 154(2): 365-76, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23870125

RESUMO

Phagocytosis and degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is fundamental to vision. Autophagy is also responsible for bulk degradation of cellular components, but its role in POS degradation is not well understood. We report that the morning burst of RPE phagocytosis coincided with the enzymatic conversion of autophagy protein LC3 to its lipidated form. LC3 associated with single-membrane phagosomes containing engulfed POS in an Atg5-dependent manner that required Beclin1, but not the autophagy preinitiation complex. The importance of this process was verified in mice with Atg5-deficient RPE cells that showed evidence of disrupted lysosomal processing. These mice also exhibited decreased photoreceptor responses to light stimuli and decreased chromophore levels that were restored with exogenous retinoid supplementation. These results establish that the interplay of phagocytosis and autophagy within the RPE is required for both POS degradation and the maintenance of retinoid levels to support vision.


Assuntos
Autofagia , Células Fotorreceptoras de Vertebrados/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Visão Ocular , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 5 Relacionada à Autofagia , Proteína Beclina-1 , Bovinos , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose , Fagossomos/metabolismo , Retinoides/metabolismo
2.
J Biol Chem ; 289(11): 7777-86, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24474694

RESUMO

Apoptotic cells trigger immune tolerance in engulfing phagocytes. This poorly understood process is believed to contribute to the severe immunosuppression and increased susceptibility to nosocomial infections observed in critically ill sepsis patients. Extracellular high mobility group box 1 (HMGB1) is an important mediator of both sepsis lethality and the induction of immune tolerance by apoptotic cells. We have found that HMGB1 is sensitive to processing by caspase-1, resulting in the production of a fragment within its N-terminal DNA-binding domain (the A-box) that signals through the receptor for advanced glycation end products (RAGE) to reverse apoptosis-induced tolerance. In a two-hit mouse model of sepsis, we show that tolerance to a secondary infection and its associated mortality were effectively reversed by active immunization with dendritic cells treated with HMGB1 or the A-box fragment, but not a noncleavable form of HMGB1. These findings represent a novel link between caspase-1 and HMGB1, with potential therapeutic implications in infectious and inflammatory diseases.


Assuntos
Apoptose , Caspase 1/metabolismo , Proteína HMGB1/química , Receptores Imunológicos/metabolismo , Animais , Candida/metabolismo , Candidíase/imunologia , Células Dendríticas/microbiologia , Fibroblastos/citologia , Tolerância Imunológica , Imunidade Inata , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/química , Receptor para Produtos Finais de Glicação Avançada , Proteínas Recombinantes/metabolismo , Sepse/imunologia , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa