RESUMO
The permeation enhancers (PEs) sodium caprate (C10) and sodium N-[8-(2-hydroxybenzoyl) amino] caprylate (SNAC) have been utilized for the intestinal and gastric delivery of macromolecules, respectively. However, the potential of C10 for the gastric delivery of a peptide and the ability of SNAC to deliver other peptides to the stomach beyond semaglutide have not been investigated. In this study, we have developed and evaluated C10 and SNAC-containing erodible tablets for the gastricdelivery of a glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GIP/GLP1) dual agonist peptide (LY) in cynomolgus monkeys. We also evaluated the impact of release rates on the in vivo performance of C10 and SNAC. Furthermore, we compared the oral exposure of the LY peptide and semaglutide with different proteolytic stabilities using a SNAC erodible tablet. Additionally, we investigated the mechanism of action of SNAC for improving gastric absorption of the LY peptide via tissue distribution in monkey. C10 and SNAC tablets released the peptide and PE by erosion from the tablet surface with 100 % release within 60 min at pH 6.8. Following a single oral administration to monkeys, C10 and SNAC erodible tablets at 300 mg exhibited similar LY mean absolute oral bioavailability of 5.7 % and 4.2 %, respectively. The C10 immediate release capsule (500 mg) with faster dissolution profile (10 min) showed a decrease in the LY oral bioavailability; however, a faster dissolution profile (15 min) with erodible SNAC tablet resulted in a relatively higher LY oral bioavailability compared to the slow-release erodible tablets (60 min). Using SNAC as the PE, the combination of slow-release tablet design and LY peptide with higher pepsin stability resulted in about 4-fold higher mean oral bioavailability in the monkeys than semaglutide (4.2 % vs 1.2 %, respectively). In the monkey gastric tissue, SNAC was found to reduce tight junction protein levels and increase the peptide uptake into the gastric epithelium suggesting its permeation enhancing mechanism via both paracellular and transcellular pathways. Taking these data altogether, the enhanced proteolytic stability of the LY peptide combined with the optimal erodible tablets enabled the gastric delivery of the LY peptide with a higher oral bioavailability than semaglutide.
Assuntos
Polipeptídeo Inibidor Gástrico , Estômago , Animais , Peptídeo 1 Semelhante ao Glucagon , Transporte Biológico , Receptores Acoplados a Proteínas G , Haplorrinos , Administração OralRESUMO
The induction of nausea and emesis is a major barrier to maximizing the weight loss profile of obesity medications, and therefore, identifying mechanisms that improve tolerability could result in added therapeutic benefit. The development of peptide YY (PYY)-based approaches to treat obesity are no exception, as PYY receptor agonism is often accompanied by nausea and vomiting. Here, we sought to determine whether glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) agonism reduces PYY-induced nausea-like behavior in mice. We found that central and peripheral administration of a GIPR agonist reduced conditioned taste avoidance (CTA) without affecting hypophagia mediated by a PYY analog. The receptors for GIP and PYY (Gipr and Npy2r) were found to be expressed by the same neurons in the area postrema (AP), a brainstem nucleus involved in detecting aversive stimuli. Peripheral administration of a GIPR agonist induced neuronal activation (cFos) in the AP. Further, whole-brain cFos analyses indicated that PYY-induced CTA was associated with augmented neuronal activity in the parabrachial nucleus (PBN), a brainstem nucleus that relays aversive/emetic signals to brain regions that control feeding behavior. Importantly, GIPR agonism reduced PYY-mediated neuronal activity in the PBN, providing a potential mechanistic explanation for how GIPR agonist treatment reduces PYY-induced nausea-like behavior. Together, the results of our study indicate a novel mechanism by which GIP-based therapeutics may have benefit in improving the tolerability of weight loss agents.
Assuntos
Fármacos Antiobesidade , Peptídeo YY , Receptores dos Hormônios Gastrointestinais , Animais , Fármacos Antiobesidade/efeitos adversos , Camundongos , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Obesidade/tratamento farmacológico , Peptídeo YY/efeitos adversos , Receptores dos Hormônios Gastrointestinais/agonistasRESUMO
Glucagon-like peptide 1 receptor (GLP-1R) agonists decrease body weight and improve glycemic control in obesity and diabetes. Patient compliance and maximal efficacy of GLP-1 therapeutics are limited by adverse side effects, including nausea and emesis. In three different species (i.e., mice, rats, and musk shrews), we show that glucose-dependent insulinotropic polypeptide receptor (GIPR) signaling blocks emesis and attenuates illness behaviors elicited by GLP-1R activation, while maintaining reduced food intake, body weight loss, and improved glucose tolerance. The area postrema and nucleus tractus solitarius (AP/NTS) of the hindbrain are required for food intake and body weight suppression by GLP-1R ligands and processing of emetic stimuli. Using single-nuclei RNA sequencing, we identified the cellular phenotypes of AP/NTS cells expressing GIPR and GLP-1R on distinct populations of inhibitory and excitatory neurons, with the greatest expression of GIPR in γ-aminobutyric acid-ergic neurons. This work suggests that combinatorial pharmaceutical targeting of GLP-1R and GIPR will increase efficacy in treating obesity and diabetes by reducing nausea and vomiting.
Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/agonistas , Animais , Peso Corporal/efeitos dos fármacos , Comportamento Alimentar , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Musaranhos , VômitoRESUMO
Tirzepatide (LY3298176), a dual GIP and GLP-1 receptor (GLP-1R) agonist, delivered superior glycemic control and weight loss compared with GLP-1R agonism in patients with type 2 diabetes. However, the mechanism by which tirzepatide improves efficacy and how GIP receptor (GIPR) agonism contributes is not fully understood. Here, we show that tirzepatide is an effective insulin sensitizer, improving insulin sensitivity in obese mice to a greater extent than GLP-1R agonism. To determine whether GIPR agonism contributes, we compared the effect of tirzepatide in obese WT and Glp-1r-null mice. In the absence of GLP-1R-induced weight loss, tirzepatide improved insulin sensitivity by enhancing glucose disposal in white adipose tissue (WAT). In support of this, a long-acting GIPR agonist (LAGIPRA) was found to enhance insulin sensitivity by augmenting glucose disposal in WAT. Interestingly, the effect of tirzepatide and LAGIPRA on insulin sensitivity was associated with reduced branched-chain amino acids (BCAAs) and ketoacids in the circulation. Insulin sensitization was associated with upregulation of genes associated with the catabolism of glucose, lipid, and BCAAs in brown adipose tissue. Together, our studies show that tirzepatide improved insulin sensitivity in a weight-dependent and -independent manner. These results highlight how GIPR agonism contributes to the therapeutic profile of dual-receptor agonism, offering mechanistic insights into the clinical efficacy of tirzepatide.
Assuntos
Tecido Adiposo Branco/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Resistência à Insulina , Obesidade/metabolismo , Tecido Adiposo Branco/patologia , Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Camundongos , Camundongos Knockout , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/patologiaRESUMO
AIM: To determine the extent and nature of extemporaneous compounding of liquid preparations in a sample of New Zealand hospitals. METHODS: Retrospective data were collected from eight hospitals known to provide compounding services during the period 1 June 2004 to 31 December 2004; including dosage form, volume, and quantity prepared. Data were collected on site from compounding logbooks and batch sheets. Demographic patient data was limited to age and was only collected from pharmacy departments where this information was readily available. Off-label use was analysed where appropriate data were available. RESULTS: 2015 products were compounded over the 7-month period; an average of 251.9 per month. More oral dosage forms were compounded (n=152) compared to topical dosage forms (n=100); 74 drugs required extemporaneous preparation for oral use. There were 16 drugs used in an off-label manner on 144 occasions for paediatric patients. Most off-label drugs were reformulated as suspensions; omeprazole suspension was compounded at all of the hospitals. Off-label use of four drugs (sotalol, labetalol, diazoxide, and clonidine) was analysed for different paediatric age groups. CONCLUSIONS: Suspensions are the most frequently compounded dosage form and omeprazole is the drug that is most frequently reformulated. Off-label medicines form a small but integral role in the supply of medicinal products.